
A cellular solution to a robotics problem

Zitong Jerry Wang1∗, Matt Thomson2

1Center for Interdisciplinary Studies (CIS), School of Science, Westlake University, Zhejiang & 310024, China.

2Division of Biology and Biological Engineering, Caltech, Pasadena & 91125, USA.

∗Corresponding author. Email: jerry@westlake.edu.cn

Localizing and navigating toward a signal source in noisy environments re-

mains a fundamental challenge in robotics. Similarly, cells in tissues must navi-

gate noisy, fragmented molecular gradients, shaped by fluid flow and extracellular

matrix interactions. We show that cells can perform source localization using a

biophysical implementation of a computational algorithm called Bayes filtering,

where the spatial distribution of molecules encodes a probability distribution over

source location and intracellular transport processes update this distribution. Un-

like conventional Bayes filtering, the cellular implementation can adjust the weight

of past observations based on current environmental signals. When translated to

traditional robotics algorithms, this signal-aware learning rate significantly im-

proves navigation performance in high-noise conditions, revealing how biological

mechanisms can advance engineered systems.

Localizing and navigating toward a target in a complex, noisy environment is a fundamental

challenge in robotics. Over the past several decades, Bayes filtering and its variants—Kalman

filters, particle filters, and smoothing-based methods—have become standard tools for robotic state

estimation and navigation tasks ranging from self-driving cars to drone flight control (1). These

Bayesian approaches iteratively update a belief distribution over the target location using sensor

measurements. Bayes filtering leads to optimal estimates of the true target location in the sense of
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having the smallest mean squared error under standard assumptions. Despite their success, high-

noise conditions and significant variability in motion can still degrade performance, especially in

unstructured or rapidly changing environments (2).

Cells can efficiently localize to ligand sources in complex tissue environments, but the mech-

anisms remain unclear. In tissues, extracellular matrix (ECM) binding and interstitial fluid flow

break ligand gradients into irregular, fragmented patches (3–6). For example, CCL21 secreted

from lymphatic vessels in the dermal interstitium is transported by fluid flow and captured by a

non-uniform ECM network, forming a stable, reticulated pattern with local concentration peaks (6).

Similar phenomena have been observed for other guidance molecules in vivo (7–9). As a result,

cells below 40 𝜇m in diameter often experience local gradients that do not reliably point toward

the true source (6). A naive gradient-following strategy would risk trapping cells at these signal

peaks, preventing efficient source localization. Meanwhile, random walks are similarly inefficient

over long distances due to the slow speed of cell migration. Understanding how cells navigate such

noisy, complex environments may suggest new strategies to improve robotic algorithms.

Recent observations suggest dynamic spatial rearrangement of surface receptors may be impor-

tant for effective navigation. For instance, receptors such as TrkB, Robo1, and PlxnA1 in neuronal

growth cones reorganize according to local ligand distributions, and inhibiting their rearrange-

ment impairs directional guidance (10, 11). Similarly, blocking CCR2 receptor redistribution on

mesenchymal stem cells, without changing its overall expression, severely disrupts targeted migra-

tion to injured muscle tissues (12). These observations suggest that receptor dynamics—not just

expression—can be pivotal for robust navigation.

In this work, we show that dynamic receptor rearrangement can function as a biophysical im-

plementation of a Bayes filter that is optimized for tissue navigation. The spatial distribution of

receptors encodes a probability distribution over source location and intracellular transport pro-

cesses update this distribution based on local ligand cues. Unlike conventional Bayes filtering,

the cellular Bayes filter can adjust the weight of past observations in response to current sig-

nals. We demonstrate, through simulations, that translating this adaptive mechanism back into

traditional robotics algorithms yields significantly improved source localization in high-noise and

high-variance motion scenarios. Our results illustrate how biological mechanisms can inspire more

robust navigation solutions in engineered systems.
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Naive gradient tracking is insufficient for interstitial gradients

Cells navigate to a ligand source by tracking local concentration gradients, but the local gradient

does not always point toward the ligand source. For example, CCL21 is a chemokine secreted

by lymphatic endothelial cells that guides dendritic cells toward lymphatic vessels. Quantitative

imaging of mouse ear dermis reveals gradients of CCL21 within the perilymphatic interstitium

when averaged across multiple spatial regions (Figure 1A, adopted from (6)). However, these

chemokines are distributed in disconnected patches, leading typical immune cells (10-20 𝜇m in

diameter) to observe local gradient directions that often fail to align with the global source direction

(Figure 1B).

We show through PDE simulation of fluid flow through an ECM matrix that such a patchy

distribution can be partly explained by the irregular network of ECM proteins (13). Indeed, our

simulated ligand distribution closely resembles experimentally observed chemokine distributions

(Figure 1A-B). In both cases, local gradient directions experienced by a typical immune cell (10-

20 𝜇m in diameter) fail to align with the global gradient direction, whereas larger cells (40𝜇m) do

not experience this misalignment (Figure 1B).

We simulated cells migrating in patchy interstitial gradients and found that cells consistently

become trapped in local ligand patches when strictly following local gradients (Figure 1C-D).

We implement local gradient tracking by repeatedly computing receptor activity across a cell’s

membrane and translating the cell in the direction of maximal receptor activity (13). Figure 1C

demonstrates how simulated cell trajectories tend to become trapped away from the ligand source.

As predicted by the gradient vector fields in Figure 1B, cells (10-20 𝜇m in diameter) fail to traverse

a 50 𝜇m gradient even after six hours (Figure 1D). This problem is analogous to the challenge

of designing optimization algorithms for non-convex functions with local optima, where naive

gradient descent strategies provably fail to reach the global optimum.

Cell navigation as a Bayesian inference problem

We formulate cell target tracking as a spatial Bayesian inference problem, drawing inspiration from

Bayes filtering in robotic source localization. Instead of moving in the direction of the highest

ligand concentration, a Bayesian strategy requires the cell to maintain a ”belief” over the target
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direction as a probability distribution and move in the direction of the strongest belief (Figure 2A).

Bayes filtering is a probabilistic technique for estimating the state of a system over time by

iteratively updating predictions with new observations (1). In robotic localization (Figure 2A),

Bayes filtering helps the agent estimate a target’s location at time 𝑡, denoted 𝜃𝑡 , by maintaining

a probability distribution, bel(𝜃𝑡), over all possible locations. This estimate is iteratively refined

using new input signals 𝑍𝑡 according to the following update rule:

bel (𝜃𝑡) = 𝜂𝑝 (𝑍𝑡 | 𝜃𝑡)
∫ 𝜋

−𝜋
𝑝 (𝜃𝑡 | 𝜃𝑡−1) bel (𝜃𝑡−1) 𝑑𝜃𝑡−1. (1)

Here, 𝑝 (𝑍𝑡 | 𝜃𝑡) is the the observation model, which updates the agent’s belief about the target’s

location by incorporating newly acquired signals 𝑍𝑡 . The term 𝑝 (𝜃𝑡 | 𝜃𝑡−1) is the motion model,

which predicts how the agent’s or target’s position evolves over time based on known actions

or movement patterns (Figure 2B). It accounts for uncertainties in movement and projects the

distribution forward, updating the agent’s belief even before any new signals have been observed.

At each time step after updating its belief distribution, the agent moves in the direction with the

highest probability, maximizing its likelihood of locating the target.

We can map Bayes filtering to our cell navigation problem by specifying both the observation

model and the motion model. In cell navigation, we define 𝜃𝑡 as one of 𝑁 possibles direction of

the ligand source relative to the cell, given by 𝜃𝑡 = 2𝜋𝑖
𝑁

for 𝑖 = 1, . . . , 𝑁 . The belief distribution

bel
(
𝜃𝑡 =

2𝜋𝑖
𝑁

)
is denoted as 𝑃𝑡

𝑖
, and the input signal is the vector of ligand counts 𝐶𝑡 ∈ Z𝑁 around

the cell. The observation model 𝑝(𝐶𝑡 |𝜃𝑡) represents the likelihood of the cell observing ligand

distribution 𝐶𝑡 given a source direction 𝜃𝑡 . For simplicity, we assume a local observation models

where 𝑝(𝐶𝑡 |𝜃𝑡) depends only on𝐶𝑡 (𝜃𝑡), the ligand level at direction 𝜃𝑡 . Sampling from our simulated

interstitial gradient, we show that we can approximate the observation model as:

𝑝(𝐶𝑡 |𝜃𝑡 = 2𝜋𝑖/𝑁) ≈ 𝜂(1 + 𝛽𝐶𝑡𝑖 ) (2)

where 𝐶𝑡
𝑖
= 𝐶𝑡 (𝜃𝑡 = 2𝜋𝑖/𝑁). For the motion model, we use an odometry-based Gaussian noise

model, assuming

𝜃𝑡 |𝜃𝑡−1 ∼ N(𝜃𝑡−1, 𝜎
2)

with 𝜎2 ≪ 1, a common approach in robotic navigation. This noise represents fluctuations in

the direction of a cell’s movement. Under these assumptions, the integral in Equation 1 reduces to
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a simple sum: ∫ 𝜋

−𝜋
𝑝 (𝜃𝑡 | 𝜃𝑡−1) bel (𝜃𝑡−1) 𝑑𝜃𝑡−1 ≈ 𝜎

(
𝑃𝑡−1
𝑖−1 + 𝑃𝑡−1

𝑖+1

)
+ (1 − 2𝜎)𝑃𝑡−1

𝑖 (3)

Altogether, we obtain the cellular Bayes filter update equation,

𝑃𝑡𝑖 = 𝜂
(
1 + 𝛽𝐶𝑡𝑖

) [
𝜎

(
𝑃𝑡−1
𝑖−1 + 𝑃𝑡−1

𝑖+1

)
+ (1 − 2𝜎)𝑃𝑡−1

𝑖

]
(4)

This process allows cells to iteratively refine predictions with observations, enabling robust

tracking and localization in unpredictable environments. Indeed, Figure 2C shows that cells simu-

lated to move in the direction of maximal probability, using Bayes updates according to Equation 4,

navigate interstitial gradients with a 30-fold higher success rate compared to simple gradient track-

ing.

Adaptive receptor redistribution acts as a Bayes filter for efficient navigation

For a cell to implement Bayes filtering, it minimally requires a physical substrate to store the belief

distribution 𝑃(𝜃𝑡) (Figure 3A). The motion model in Equation 3 requires this substrate to diffuse

in 2D for a 3D cell, while the observation model in Equation 2 requires it to interact directly with

signaling ligands. Cell surface receptors fulfill both requirements. Figure 3B shows that activity-

dependent receptor rearrangement implements an exact Bayes filter by mapping the observation

model parameter (𝛽) to biased receptor exocytosis, the motion model parameter (𝜎) to membrane

diffusion, and the normalization constant (𝜂) to receptor endocytosis (13).

Altogether, these mappings show that the cellular Bayes filter update rule (Equation 4) is

mathematically equivalent to receptor dynamics described by the following PDE,

𝜕𝑅(𝑥, 𝑡)
𝜕𝑡

= 𝐷∇2
memb𝑅 − 𝑘off𝑅 + ℎ𝐴𝑅cyto (5)

Figure 3C illustrates each component of these receptor dynamics, where 𝑘off is the rate of

receptor endocytosis, ℎ𝐴 represents the rate of receptor exocytosis which scales with local receptor

activity 𝐴, and 𝐷 is the membrane diffusion coefficient. Kymograph comparisons in Figure 3D

confirm that, when using match parameter values, the spatiotemporal dynamics of receptors 𝑅(𝑥, 𝑡)

exactly match those of the probability distribution 𝑃(𝜃𝑡) evolving through recursive Bayesian up-

dates. Note that activity-dependent rearrangement of cell surface receptors has been observed across
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multiple migratory cell types, including lymphocytes (14,15), carcinoma cells (16), mesenchymal

stem cells (12), and growth cones (10, 17, 18), where polarized exocytosis has been observed for

some of these receptors (17–20).

Simulated cells with active receptor redistribution rapidly localize to the ligand source, effec-

tively avoiding ligand patches in interstitial gradients. To assess navigation efficiency, we simulated

cells navigating an interstitial gradient with the goal of attempting to reach the ligand source located

at the left boundary (Figure 3E). We compared navigation efficiency of three cellular strategies:

uniform, feedback and LEGI (Methods). The uniform strategy corresponds to naive gradient ascent,

where cells simply follow the direction of maximal receptor activity. In the feedback strategy, cells

also follow the direction of maximal receptor activity, but receptors actively redistribute according

to the dynamics described by Equation 5. The Local Excitation and Global Inhibition (LEGI)

strategy (21) is a mechanism where cells respond to nearby signals by amplifying local signaling

(excitation) at the cell’s front while simultaneously inhibiting signal sensitivity across the rest of

the cell, allowing directed movement toward the signal source. For 10-20 𝜇m cells, Figure 3E

shows cells with active receptor redistribution successfully localize to the ligand source efficiently,

overcoming local ligand patches. In contrast, both the uniform and LEGI strategies fail to cross

the 60 𝜇m gradient even after three hours (Figure 3F). Simulation of both the feedback and LEGI

strategy used physiologically plausible parameters from literature (20,21).

Bayesian formalism predicts cell constraints

The equivalence between the Bayesian formulation and the PDE formulation predicts coupling

between cell speed, cell signaling, and spatial structure of the tissue signaling environment.

In standard robotic Bayes filter, the motion model noise 𝜎 increases with agent speed (Equa-

tion 3). This connection accounts for the fact that as an agent moves faster, the uncertainty in its

future position increases because small errors in estimating direction have a larger effect over the

traveled distance. Mapping motion model to receptor dynamics (Figure 3B) links 𝜎 to receptor

diffusivity, predicting that optimal receptor diffusion depends on cell speed. Figure 4A-B confirms

this relationship, showing that higher cell speeds require greater receptor diffusivity. Intuitively,

a fast-moving cell must reset its priors more frequently as its environment changes faster. Lastly,
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Figure 4A suggests that low receptor diffusivity alone appears sufficient for efficient migration

rather than strict adherence to Figure 4B’s monotonic trend.

In the observation model of a Bayes filter (Equation 2), 𝛽 reflects the patchiness of the interstitial

gradient. Its mapping to the receptor PDE (Figure 3B) suggests that optimal receptor transport

depends on environmental patchiness. Figure 4C shows that reducing ECM binding shifts the

gradient from ECM-bound to soluble, decreasing patchiness. In soluble gradients, where local

and global gradient directions align, higher receptor transport enables faster target localization

(Figure 4D). Notably, in these conditions, Bayes filtering may be unnecessary, as simple gradient

tracking suffices. Indeed, C5aR, a receptor that does not adaptively redistribute, binds soluble

ligands that lack ECM binding (22,23).

Biological implementation improves standard algorithm

A unique feature of cellular Bayesian filtering, distinct from standard implementations in robotics,

is the coupling between observed signals and the motion model. In traditional Bayesian filtering, the

motion model accounts for uncertainty in movement (e.g., slippage, wind) and is independent of the

observed signal dynamics. However, many membrane receptors, including chemokine receptors,

deviate from this paradigm: their diffusivity (motion model variance) is modulated by ligand binding

(observed signal). Figure 5A illustrates multiple biophysical mechanisms that reduce receptor

diffusivity upon ligand binding, including oligomerization (24), lipid raft association (10), and

cytoskeletal anchoring (25).

This activity-dependent coupling enhances Bayesian filtering for target localization in noisy

environments. To assess potential effects of this coupling (Figure 5B), we compare two agents

navigating toward a signal source (star): one using fixed variance in its motion model and another

using adaptive variance. In the absence of any signal, both use a baseline variance 𝐷true, the

actual motion noise. However, in the presence of a signal, the adaptive agent exponentially reduces

variance with increasing signal strength 𝑠,

𝐷 := 𝐷0 + (𝐷true − 𝐷0) exp(−𝑘𝑠),

where 𝐷0 < 𝐷true. Figure 5C shows that adaptive variance reduces the time-to-target by a factor
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of four or more, with the greatest benefit observed in low signal-to-noise ratio (SNR) environments.

This improvement follows from Kalman filter gain analysis (13). When the agent is far from the target

and the signal is weak, a higher 𝐷 keeps the belief more responsive to new, noisy measurements,

preventing the filter from becoming overly reliant on an uncertain prior. Conversely, near the target,

where the signal is strong, reducing 𝐷 locks in past reliable estimates, accelerating convergence.

The adaptive strategy is particularly advantageous in low-SNR environments, where weak signals

and high measurement uncertainty otherwise hinder belief updates.

Discussion

In this work, we investigated cell navigation in patchy interstitial gradients and established a direct

mapping between activity-dependent receptor redistribution and Bayesian filtering, a widely used

robotic navigation algorithm. This mapping demonstrates that adaptive receptor redistribution can

enable cells to efficiently navigate interstitial gradients, overcoming localized signal patchiness.

Furthermore, it reveals a unique feature of the cellular Bayesian filter, the coupling between signal

detection and receptor dynamics, that enhances standard Bayesian filtering in robotic navigation.

Alternative implementations of a Bayes filter that does not require receptor redistribution are

possible. For example, we may reinterpret 𝑅(𝑥, 𝑡) as the number of sensitive receptors at membrane

position 𝑥 and time 𝑡 instead of absolute receptor count. In such a case, receptor sensitivity may be

determined by some biochemical modification of receptors which can spread to nearby receptors.

Another alternative is storing the belief distribution downstream of receptor activation, where the

observed signal corresponds to receptor activation rather than ligand concentration. The same

Bayesian framework applies to any membrane-bound molecule involved in signal processing.

The connection between Bayes filtering and receptor redistribution suggests an interesting hy-

pothesis for receptors that bind either ECM-bound ligands compared to soluble ligands. Specifically,

our model suggests that receptors that binds ECM-bound signal would benefit more strongly from

adaptive redistribution compared to receptors that mostly interacts with soluble signals. Further

experimental validation is needed to test this prediction and explore its biological implications.
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Figure 1: Cell migration in interstitial chemokine gradient. (A) Observed CCL21 gradient in the

mouse ear dermis (left) and simulated ECM-bound gradient (right), with their respective average

concentrations shown below. (B) Observed and simulated interstitial chemokine distributions, with

vector fields showing the local gradient directions as experienced by cells of sizes 9, 18, and 36 𝜇m.

(C) Simulated cell trajectories for cells migrating strictly along the local gradient at a speed of

2 𝜇m/min for 6 hours. (D) Time to reach the ligand source for simulated cells of different sizes.

Success rate is defined as the proportion of cells reaching the ligand source within 1 hour. CCL21

images adapted from (6).
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Figure 2: Mapping cell navigation to Bayes filtering. (A) Bayes filtering maintains a belief

distribution over possible target directions, and agent moves in the direction of maximum belief

(star). (B) The general Bayes filter update equation consists of both an observation model and a

motion model, which we map onto the cell navigation problem. (C) Success rate of cells simulated

to navigate with simple gradient tracking where the cell consistently moves in the direction of local

gradient compared to cells updating a belief distribution via the cellular Bayes filter from panel (B)

and moving in the direction of maximal belief.
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Figure 3: Mapping Bayes filtering to receptor dynamics. (A) Conceptual mapping of a math-

ematical belief distribution to a physical distribution of molecules. (B) Mathematical equivalence

between the Bayesian update equation and a receptor PDE model. (C) Schematic of the recep-

tor PDE model, illustrating key molecular processes. (D) Kymograph comparison of the evolving

Bayesian belief distribution and the simulated receptor distribution in response to the same dy-

namically changing environment. (E) Simulated cell trajectories with and without active receptor

redistribution. (F) Navigation performance, showing time to source and success rate for cells using

uniform receptors, actively redistributed receptors, Bayesian filter updates, and Local Excitation

Global Inhibition (LEGI) strategies.
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Figure 4: Bayesian formalism predicts optimal receptor dynamics. (A) Success rate for cells

simulated with different receptor diffusivity and cell speed. (B) Optimal receptor diffusivity at

various cell speed, dot showing empirical data for CXCR4 (26) and T cells (27). (C) Simulated

interstitial gradient formed by ligands with different ECM binding rate, given continuous ligand

secretion. (D) Optimal receptor transport rate (coefficient) at various ligand-ECM binding rates.

Figure 5: Signal-coupled motion model for robotic target navigation. (A) Example cellular

mechanisms which couples receptor activation with receptor diffusivity (motion model variance).

(B) Simulated trajectories of robotic agent attempting a target navigation task, either with or

without signal coupling to motion model. (C) Navigation efficiency of the two different strategies

in environments with different signal-to-noise ratio (SNR).
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33. D. K. Schlüter, I. Ramis-Conde, M. A. Chaplain, Computational modeling of single-cell

migration: the leading role of extracellular matrix fibers. Biophysical journal 103 (6), 1141–

1151 (2012).

34. B. Lee, et al., A three-dimensional computational model of collagen network mechanics. PloS

one 9 (11), e111896 (2014).

35. P. Friedl, et al., Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen

lattices results in local matrix reorganization and shedding of 𝛼2 and 𝛽1 integrins and CD44.

Cancer research 57 (10), 2061–2070 (1997).

36. M. Ueda, Y. Sako, T. Tanaka, P. Devreotes, T. Yanagida, Single-molecule analysis of chemo-

tactic signaling in Dictyostelium cells. Science 294 (5543), 864–867 (2001).

37. E. Marco, R. Wedlich-Soldner, R. Li, S. J. Altschuler, L. F. Wu, Endocytosis optimizes the

dynamic localization of membrane proteins that regulate cortical polarity. Cell 129 (2), 411–

422 (2007).

38. B. Hegemann, et al., A cellular system for spatial signal decoding in chemical gradients.

Developmental cell 35 (4), 458–470 (2015).

39. L. D. L. JJ, Receptors: Models for binding, trafficking, and signaling (1993).

40. S. Pippig, S. Andexinger, M. J. Lohse, Sequestration and recycling of beta 2-adrenergic recep-

tors permit receptor resensitization. Molecular pharmacology 47 (4), 666–676 (1995).

41. J. A. Koenig, J. M. Edwardson, Intracellular trafficking of the muscarinic acetylcholine receptor:

importance of subtype and cell type. Molecular pharmacology 49 (2), 351–359 (1996).

42. J. A. Koenig, J. M. Edwardson, Kinetic analysis of the trafficking of muscarinic acetylcholine

receptors between the plasma membrane and intracellular compartments. Journal of Biological

Chemistry 269 (25), 17174–17182 (1994).

43. C. Shi, C.-H. Huang, P. N. Devreotes, P. A. Iglesias, Interaction of motility, directional sensing,

and polarity modules recreates the behaviors of chemotaxing cells. PLoS computational biology

9 (7), e1003122 (2013).

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2025.02.12.637580doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.12.637580
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. MATLAB, 23.2.0.2409890 (R2023b) (The MathWorks Inc., Natick, Massachusetts) (2023).

Acknowledgments

We would like to thank Pablo Iglesias for providing the LEGI-BEN simulation code.

Funding: Z. J. W. was funded by the Westlake Fellows program provided by Westlake University.

Author contributions: Z. J. W. conceived the idea and performed all simulation and mathematical

analysis. Z. J. W. and M. T. wrote the paper. Both Z. J. W. and M.T. provided funding for the project.

Competing interests: There are no competing interests to declare.

Data and materials availability: The code used in this study is publicly available on GitHub at

cellethology/bayesian-cell. This repository contains all scripts and instructions necessary

to reproduce the primary results presented in the paper.

Supplementary materials

Materials and Methods

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2025.02.12.637580doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.12.637580
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials for

A cellular solution to a robotics problem

Zitong Jerry Wang∗, Matt Thomson
∗Corresponding author. Email: jerry@westlake.edu.cn

This PDF file includes:

Materials and Methods

S1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2025.02.12.637580doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.12.637580
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods

Derivation of equivalence between receptor PDE and Bayes filtering

The original discrete update equation is given as:

𝑃𝑡+1
𝑖 − 𝑃𝑡𝑖 = 𝜂(1 + 𝛽𝐶𝑡𝑖 )

[
𝜎

(
𝑃𝑡𝑖−1 + 𝑃

𝑡
𝑖+1

)
+ (1 − 2𝜎)𝑃𝑡𝑖

]
− 𝑃𝑡𝑖 .

Rewriting and expanding:

𝑃𝑡+1
𝑖 − 𝑃𝑡𝑖 = 𝜂𝜎

(
𝑃𝑡𝑖−1 + 𝑃

𝑡
𝑖+1

)
+ 𝜂(1 − 2𝜎)𝑃𝑡𝑖 + 𝜂𝛽𝐶𝑡𝑖

[
𝜎

(
𝑃𝑡−1
𝑖−1 + 𝑃𝑡𝑖+1

)
+ (1 − 2𝜎)𝑃𝑡𝑖

]
− 𝑃𝑡𝑖 .

Grouping terms:

𝑃𝑡+1
𝑖 − 𝑃𝑡𝑖 = 𝜂𝜎

(
𝑃𝑡𝑖−1 + 𝑃

𝑡
𝑖+1 − 2𝑃𝑡𝑖

)
+ (𝜂 − 1)𝑃𝑡𝑖 + 𝜂𝛽𝐶𝑡𝑖

[
𝜎

(
𝑃𝑡−1
𝑖−1 + 𝑃𝑡𝑖+1

)
+ (1 − 2𝜎)𝑃𝑡𝑖

]
.

Replacing 𝑃𝑖 with 𝑅𝑖 and dividing by Δ𝑡, we get:

𝑅𝑡+1
𝑖

− 𝑅𝑡
𝑖

Δ𝑡
=
𝜂

Δ𝑡
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1 − 2𝑅𝑡𝑖

)
+ 𝜂 − 1

Δ𝑡
𝑅𝑡𝑖 +

𝜂

Δ𝑡
𝛽𝐶𝑡𝑖

[
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1

)
+ (1 − 2𝜎)𝑅𝑡𝑖

]
.

(a) Diffusion Term Mapping The first term:

𝜂

Δ𝑡
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1 − 2𝑅𝑡𝑖

)
maps to diffusion. Given 𝜎 = 𝐷𝑚

Δ𝑡

Δ𝑥2 and 𝜂 ≈ 1 for small Δ𝑡, we simplify:

𝜂

Δ𝑡
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1 − 2𝑅𝑡𝑖

)
= 𝜂𝐷𝑚

Δ𝑡

Δ𝑥2

(
𝑅𝑡
𝑖−1 + 𝑅

𝑡
𝑖+1 − 2𝑅𝑡

𝑖

)
Δ𝑡

.

Cancelling Δ𝑡:

𝜂𝐷𝑚

(
𝑅𝑡
𝑖−1 + 𝑅

𝑡
𝑖+1 − 2𝑅𝑡

𝑖

)
Δ𝑥2 → 𝐷𝑚∇2

memb𝑅.

(b) Decay Term Mapping The second term:

𝜂 − 1
Δ𝑡

𝑅𝑡𝑖

maps to receptor endocytosis. Given 𝜂 =
1−Δ𝑡𝑘off/2
1+Δ𝑡𝑘off/2 :

𝜂 − 1
Δ𝑡

=
1
Δ𝑡

(
1 − Δ𝑡𝑘off/2
1 + Δ𝑡𝑘off/2

− 1
)
.
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Simplifying:
𝜂 − 1
Δ𝑡

=
−Δ𝑡𝑘off

Δ𝑡
(
1 + Δ𝑡𝑘off/2

) → −𝑘off as Δ𝑡 → 0.

Thus:
𝜂 − 1
Δ𝑡

𝑅𝑡𝑖 → −𝑘off𝑅.

(c) Binding Term Mapping The last term:

𝜂

Δ𝑡
𝛽𝐶𝑡𝑖

[
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1

)
+ (1 − 2𝜎)𝑅𝑡𝑖

]
maps to receptor membrane transport. Given 𝛽 = ℎΔ𝑡

𝐾𝑑

𝑅𝑡+1
cyto+𝑅𝑡

cyto
2 and 𝐴 =

𝑅𝑡
𝑖
𝐶𝑡
𝑖

𝐾𝑑
, we get:

ℎ

𝐾𝑑

𝑅𝑡+1
cyto + 𝑅𝑡cyto

2
𝐶𝑡𝑖

[
𝜎

(
𝑅𝑡𝑖−1 + 𝑅

𝑡
𝑖+1

)
+ (1 − 2𝜎)𝑅𝑡𝑖

]
,

where 𝜂 → 1 as Δ𝑡 → 0. Now, consider Δ𝑥 → 0, we can simplify this expression further

ℎ𝐴𝑡𝑖

𝑅𝑡+1
cyto + 𝑅𝑡cyto

2
.

where 𝐴𝑡
𝑖
=

𝑅𝑡
𝑖
𝐶𝑡
𝑖

𝐾𝑑
. This is the semi-implicit treatment of ℎ𝐴𝑅cyto using the Crank-Nicolson

method.

Finally, combining the terms, the final continuous-time PDE is:

𝜕𝑅(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑚∇2
memb𝑅(𝑥, 𝑡) − 𝑘off𝑅(𝑥, 𝑡) + ℎ𝐴𝑅cyto,

where 𝐴 =
𝑅(𝑥,𝑡)𝐶 (𝑥,𝑡)

𝐾𝑑
.

Institial gradient simulation

We follow mathematical models of ligand distribution in tissue outlined in (28, 29), simulating

a tissue environment using a PDE model that incorporates four transport mechanisms: (1) free

diffusion, (2) ECM binding, (3) fluid advection, (4) degradation. The spatial domain is a rectangle

of size 300 𝜇m × 900𝜇m. We model ligands being supplied through fluid flows from the left

boundary of the domain, and penetrate the interstitial space between immobilized cells. Soluble

ligands are then transported by diffusion and fluid flow, and become immobilized upon binding

to an extracellular matrix (ECM) made up of networks of interconnected fibers containing ligand
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binding sites. We explicitly represent both ECM-bound (𝑐𝑏) and soluble forms of the ligand (𝑐𝑠),

so that the the total ligand concentration 𝑐(𝑥, 𝑡) at position 𝑥 and time 𝑡 is equal to,

𝑐(𝑥, 𝑡) = 𝑐𝑠 (𝑥, 𝑡) + 𝑐𝑏 (𝑥, 𝑡). (S1)

Mathematically, we can describe the dynamics of the soluble fraction 𝑐𝑠 (𝑥, 𝑡) as follows,
𝜕𝑐𝑠

𝜕𝑡
= 𝜅 |boundary − 𝑢(𝑥, 𝑡) · ∇𝑐𝑠 + 𝐷Δ𝑐𝑠 − 𝑘ECM(𝑒(𝑥) − 𝑐𝑏)𝑐𝑠 − 𝛾𝑠𝑐𝑠 . (S2)

1. The first term, 𝜅, represents production/release of molecule at the left boundary.

2. The second term represents fluid transport, where 𝑢(𝑥, 𝑡) is the velocity field of the interstitial

fluid with input flow speed 𝑢in at the left boundary. We impose zero-velocity condition on

the top and bottom boundary.

3. The third term represents diffusion with 𝐷 as the ligand diffusion coefficient.

4. The fourth term represents ECM binding. The concentration of ECM binding site 𝑒(𝑥) at

position 𝑥 is generated using a minimal model of ECM protein distribution (see paragraph on

”Generating ECM fiber network”). Binding occur with rate proportional to 𝑒(𝑥) − 𝑐𝑏 (𝑥, 𝑡),

the level of available ECM binding site. Since the on-rate of ECM binding is much larger

than the off-rate, we assume the off-rate to be zero.

5. The last term represents enzymatic degradation of ligand.

The dynamics of ECM-bound fraction 𝑐𝑏 (𝑥, 𝑡) is much simpler, involving a term corresponding

to ECM binding, a degradation term due to enzymatic decay.
𝜕𝑐𝑏

𝜕𝑡
= 𝑘ECM(𝑒(𝑥) − 𝑐𝑏)𝑐𝑠 − 𝛾𝑏𝑐𝑏 . (S3)

To generate a ligand concentration field 𝑐, we take 𝜅 to be non-zero for a brief period of time,

representing a bolus of ligand released. Then, we simulate the combined dynamics of bound

and soluble fractions for sufficiently long until the ligand distribution 𝑐(𝑥, 𝑡) is relatively stable.

In practice, we observe that 𝑐 ≈ 𝑐𝑏 after a sufficiently long period of time, since the soluble

fraction quickly become insignificant due to fluid flow. The resulting concentration field represents

an interstitial gradient. The average concentration is set by setting the release rate 𝜅 such that

the concentration of the soluble fraction 𝑐𝑠 matches measured chemokine concentration found in

interstitial fluids (1-10 pM) (30,31).
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Generating ECM fiber network To generate a distribution of ECM binding sites 𝑒(𝑥) Equa-

tion S3, we use a minimal computation model of fiber network (32–34). The model generates ECM

fibers represented by line segments, which could represent fibronectin, collagen, laminin, or other

fibrous matrix components. To position each fiber, one end of each segment is randomly positioned

following a uniform distribution within the domain. The other end’s position is determined by pick-

ing an angle, uniformly from [0, 2𝜋), and length sampled from a normal distribution with mean

75𝜇𝑚 and standard deviation of 5𝜇𝑚 (as measured for collagen by Friedl et al (35)). In total, 4050

fibers were placed in the domain. For the PDE simulation, the generated network is discretized by

counting the number of fibrous proteins around each node in the simulation lattice. The density of

fiber within each node is then converted to a concentration value representing the level of ECM

binding sites, resulting in an average concentration of ECM binding site of 520 nM.

Numerical simulation of receptor feedback scheme

In our feedback scheme, receptor 𝑟 (𝑥, 𝑡) is modeled by considering three redistribution mechanisms:

(1) lateral diffusion of 𝑟 along the plasma membrane (𝐷∇2
memb𝑟), (2) endocytosis of 𝑟 along the

plasma membrane (𝑘off 𝑟), (3) incorporation of cytoplasmic pool of receptors, 𝑅cyto, to the membrane

at rate proportional to local receptor activity (ℎ𝐴𝑅cyto). 𝐴(𝑥, 𝑡) is a random variable that denotes

receptor activity along the cell membrane, and is a function of local receptor number. Then, the

equation describing the distribution of 𝑟 across the cell membrane can be expressed mathematically

as,
𝜕𝑟 (𝑥, 𝑡)
𝜕𝑡

= 𝐷∇2
memb𝑟 − 𝑘off 𝑟 + ℎ𝐴𝑅cyto, (S4)

where the total number of receptors 𝑟tot =
∫

memb 𝑟 + 𝑅cyto is fixed.

We simulate receptor distribution by treating the cell membrane as a 1D space and the cytosol

as a single, homogeneous compartment. This simplification allows us to simulate our PDE using

the Crank-Nicolson method in one spatial dimension. Given space and time units Δ𝑥 and Δ𝑡,

respectively, the Crank-Nicolson method with 𝑅 𝑗
𝑖

:= 𝑟 (𝑖Δ𝑥, 𝑗Δ𝑡) and 𝐴 𝑗
𝑖

:= 𝐴(𝑖Δ𝑥, 𝑗Δ𝑡) is given

by the difference scheme
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𝑅
𝑗+1
𝑖

− 𝑅 𝑗
𝑖

Δ𝑡
=

𝐷

2Δ𝑥2

(
𝑅
𝑗

𝑖+1−2𝑅 𝑗
𝑖
+𝑅 𝑗

𝑖−1+𝑅
𝑗+1
𝑖+1 −2𝑅 𝑗+1

𝑖
+𝑅 𝑗+1

𝑖−1

)
− 𝑘off

2

(
𝑅
𝑗

𝑖
+𝑅 𝑗+1

𝑖

)
+
ℎ𝐴

𝑗

𝑖

2

(
𝑅
𝑗
cyto+𝑅

𝑗+1
cyto

)
(S5)

where, 𝑖 = 1, 2, 3, ...𝑚, representing 𝑚 discrete membrane compartments and 𝑅 𝑗cyto represents

the additional cytosol compartment. Since the membrane is represented by a circle, we have the

following pair of conditions,

𝑅
𝑗

0 = 𝑅
𝑗
𝑚, 𝑅

𝑗

𝑚+1 = 𝑅
𝑗

1 . (S6)

Lastly, total receptor number across all compartments is conserved,

𝑚∑︁
𝑖=1

𝑅
𝑗

𝑖
+ 𝑅 𝑗cyto =

𝑚∑︁
𝑖=1

𝑅
𝑗+1
𝑖

+ 𝑅 𝑗+1
cyto. (S7)

Now, we can combined Equation S5-S7 and rewrite everything in vector form. First, let

𝛼 :=
𝐷

2Δ𝑥2 , 𝛽 :=
𝑘off
2

, 𝜅
𝑗

𝑖
:=
ℎ𝐴

𝑗

𝑖

2
,

and rewrite Equation S5 as,

𝑅
𝑗+1
𝑖

Δ𝑡
−𝛼

(
𝑅
𝑗+1
𝑖+1 −2𝑅 𝑗+1

𝑖
+𝑅 𝑗+1

𝑖−1

)
+𝛽𝑅 𝑗+1

𝑖
−𝜅 𝑗+1

𝑖
𝑅
𝑗+1
cyto =

𝑅
𝑗

𝑖

Δ𝑡
+𝛼

(
𝑅
𝑗

𝑖+1−2𝑅 𝑗
𝑖
+𝑅 𝑗

𝑖−1

)
−𝛽𝑅 𝑗

𝑖
+𝜅 𝑗

𝑖
𝑅
𝑗
cyto (S8)

and define 𝑈 𝑗 to be the (𝑚 + 1)-dimensional vector with components 𝑅 𝑗
𝑖

for 𝑖 = 1, 2, 3, ...𝑚 and

𝑈
𝑗

𝑚+1 = 𝑅
𝑗
cyto. The difference scheme is given in the vector form

𝑃𝑈 𝑗+1 = 𝑄𝑈 𝑗 . (S9)

where,

𝑃 =



1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 0 · · · 0 −𝛼 −𝜅 𝑗+1
1

−𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 0 · · · 0 −𝜅 𝑗+1
2

0 . . .
. . .

. . .
...

...
. . .

. . .
. . .

0 · · · 0 −𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝛼 −𝜅 𝑗+1
𝑚−1

−𝛼 0 · · · 0 −𝛼 1
Δ𝑡

+ 2𝛼 + 𝛽 −𝜅 𝑗+1
𝑚

1 1 · · · 1 1



(S10)
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𝑄 =



1
Δ𝑡

− 2𝛼 − 𝛽 𝛼 0 · · · 0 𝛼 𝜅
𝑗

1

−𝛼 1
Δ𝑡

− 2𝛼 − 𝛽 𝛼 0 · · · 0 𝜅
𝑗

2

0 . . .
. . .

. . .
...

...
. . .

. . .
. . .

0 · · · 0 𝛼 1
Δ𝑡

− 2𝛼 − 𝛽 𝛼 𝜅
𝑗

𝑚−1

𝛼 0 · · · 0 𝛼 1
Δ𝑡

− 2𝛼 − 𝛽 𝜅
𝑗
𝑚

1 1 · · · 1 1



(S11)

Because 𝐴 is invertible, the Crank-Nicolson scheme reduces to the iterative process

𝑈 𝑗+1 = 𝑃−1𝑄𝑈 𝑗 . (S12)

Furthermore, we model receptor activation 𝐴𝑖 as follows (36),

𝑃(𝐴𝑖 | 𝐶𝑖, 𝑅𝑖) =
𝜇𝑖
𝐴𝑖

𝐴𝑖!
𝑒−𝜇𝑖 , (S13)

where 𝜇𝑖 = 𝑅𝑖
𝐶𝑖

𝐾𝑑
. The bracket term represents the probability of activation for a receptor

experiencing 𝐶𝑖 ligands. 𝐾𝑑 is the equilibrium dissociation constant and 𝛼 represents constitutive

receptor activity, which we take to be small (𝛼 ≪ 1). In other words, the number of active receptors

𝐴𝑖 given ligand count 𝐶𝑖 is a Poisson random variable with mean 𝜇𝑖. The entire evolution of 𝑟 can

be solved where at each time step, we update receptor activity 𝐴 𝑗
𝑖

across all membrane position 𝑖

according to the random process described by Equation S13, followed by solving Equation S12 for

𝑈 𝑗+1.

We set the value of the feedback constant ℎ using empirical measurements from (37). In Figure

3M of Marco et al., the authors report a quartile box plot showing estimated values for a parameter

they call h (which we will refer to as ℎ̄), with a mean estimate of around 1.6e−3/s. Note ℎ̄ is

equivalent in meaning as our ℎ𝐴𝑖. However, since ℎ𝐴𝑖 will be different across different membrane

bins and across time, we simulate the feedback scheme for a cell in a given environment and set the

value of h such that the mean rate ⟨ℎ𝐴𝑖⟩ (averaged across membrane and time) is approximately

equal to the mean estimate of 1.6e−3/s reported by Marco et al.. The value ℎ̄ reported by Marco et

al. corresponds specifically to the transport rate of the Cdc42 to the membrane. The parameter value
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was obtained by analyzing fluorescence recovery of GFP-Cdc42 in membrane regions bleached

with a laser pulse. Although the measured value corresponds to Cdc42, it has been used to model the

effective exocytosis rate for receptors shown to undergo activity-dependent localization, showing

good agreement with empirical data (38). Similar values around 1-2e−3/s have been measured for

the recycling rate of a wide range of GPCRs (39–42).

Numerical simulation of Local Excitation and Global inhibition

We simulate a Local Excitation, Global Inhibition Biased Excitable Network (LEGI-BEN) as

described by Shi et al. (43). This model implements an excitable network module based on an

activator-inhibitor system, where stochastic fluctuations initiate activity. The dynamics are governed

by the following equations:

𝜕𝑋

𝜕𝑡
= 𝐷𝑋∇2𝑋 + 𝑘𝑋𝑋

𝑋2

𝑘2
𝑀
+ 𝑋2

− 𝑘−𝑋𝑋 − 𝑘𝑌𝑋𝑌 + 𝑘𝑈𝑋𝑈

𝜕𝑌

𝜕𝑡
= 𝐷𝑌∇2𝑌 + 𝑘𝑋𝑌𝑋 − 𝑘−𝑌𝑌

(S14)

Here, U serves as the input to the excitable system and includes contributions from three

components: basal activation (B), stochastic fluctuations (N), and the response regulator (R) from

the LEGI module, as shown below:

𝑈 = 𝐵 + 𝑁 + 𝜆 (𝑅 − 𝑅init) . (S15)

The LEGI module processes the stimulus (S) to drive the response regulator (R), which biases

the activity of the excitable network. Its dynamics are described by the following system:

𝜕𝐸

𝜕𝑡
= −𝑘−𝐸𝐸 + 𝑘𝐸𝑆

𝜕𝐼

𝜕𝑡
= −𝑘−𝐼 𝐼 + 𝑘 𝐼𝑆 + 𝐷 𝐼∇2𝐼

𝜕𝑅

𝜕𝑡
= −𝑘−𝑅 𝐼𝑅 + 𝑘𝑅 (𝑅𝑇 − 𝑅) 𝐸

(S16)

In this framework, the activity of Y determines the direction of cell migration, with cells moving

toward the region of maximal Y activity on their surface.

All simulations and the model implementation were carried out in MATLAB (44), closely

following the protocol in (43). The signaling partial differential equations (PDEs) were solved on
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a one-dimensional representation of the cell boundary, using periodic boundary conditions. The

spatial domain was discretized into 360 points, and spatial diffusion terms were approximated

with central finite differences. This discretization transforms the PDEs into ordinary differential

equations (ODEs), which were solved using the SDE toolbox in MATLAB. Simulations were run

with a time step of 0.025 seconds.

Simulation of cell navigation

Haptotaxis algorithm At 𝑡 = 0, initialize a cell at position 𝑝0 ∈ Ω ⊂ R2.

At each subsequent time step 𝑡 = 𝑡 + Δ𝑡 with the cell at position 𝑝𝑡 ∈ Ω:

1. Compute mean ligand profile 𝒄 ∈ R𝑚 at the cell’s current position.

2. Independently sample 𝑛 ligand profiles {𝑪 (𝑖)}𝑛
𝑖=1 where each element 𝐶 𝑗 is distributed as a

Poisson random variable with mean equal to 𝑐 𝑗 .

3. For each ligand profile 𝑪 (𝑖) sampled, sample a corresponding receptor activity profiles 𝑨(𝑖) ,

𝑨(𝑖) |𝑪 (𝑖) ∼
𝑚∏
𝑗=1

Pois(𝜆 𝑗 ), where 𝜆 𝑗 = 𝑟 𝑗

(
𝐶

(𝑖)
𝑗

𝐶
(𝑖)
𝑗

+ 𝐾𝑑
+ 𝛼 𝐾𝑑

𝐶
(𝑖)
𝑗

+ 𝐾𝑑

)
. (S17)

4. Select the next direction 𝜃 as the direction of maximal receptor activity or belief probability

in the case of Bayes filtering.

5. Set new cell position 𝑝𝑡+Δ𝑡 = 𝑝𝑡 + 𝑠Δ𝑡 [cos(𝜃), sin(𝜃)], with speed 𝑠 = 1𝜇m/min, Δ𝑡 = 1𝑠.

6. Repeat from step 1.

Robot navigation simulation

Environment setup We implemented an (Extended) Kalman filtering approach for target naviga-

tion where a robot localizes and moves toward a target using noisy signal measurements. A Kalman

filter is a special type of Bayes filter where both the motion and measurement noise are Gaussian

and are more amenable to analytical treatments. The environment is discretized into a 100 × 100

grid, with the robot starting at (25, 25) and the target positioned at coordinates (75, 75). The target

emits a signal that decays with distance according to an inverse power law:
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ℎ(𝑥) = 𝑠max
∥𝑥 − 𝑥target∥𝛾

(S18)

where 𝑠max = 0.2 is the maximum signal strength and 𝛾 = 0.3 is the decay exponent. The actual

measured signal 𝑧𝑡 is a noisy version of ℎ(𝑥),

𝑧𝑡 = ℎ(𝑥) + 𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝛼2). (S19)

Robot action The robot maintains a belief state 𝑏𝑡 (𝑥) representing a probability distribution over

possible target locations which gets updated per unit time. At each iteration, the robot updates its

belief by observing a signal at its own grid position 𝑟 (𝑡) in the arena, and moves in the direction of

the maximum likelihood target location:

𝑢𝑡 = 𝜆
𝑟 (𝑡) − arg max𝑥 𝑏𝑡 (𝑥)
∥𝑟 (𝑡) − arg max𝑥 𝑏𝑡 (𝑥)∥

(S20)

where 𝜆 is the movement step size. The robot’s actual motion includes Gaussian noise with

standard deviation 0.5.

Belief update The robots’ belief 𝑏𝑡 (𝑥) is updated in two stages: motion update and measurement

update. The motion update incorporates robot movement uncertainty through a 2D convolution

operation:

𝑏𝑡+1(𝑥) = 𝑏𝑡 (𝑥) ∗ 𝐾𝜎(𝑠) (S21)

where ∗ denotes 2D convolution and 𝐾𝜎(𝑠) is a 5 × 5 Gaussian kernel with scalar standard

deviation 𝜎(𝑠). Each kernel element (𝑖, 𝑗) is computed as:

𝐾𝜎(𝑠) (𝑖, 𝑗) = exp

(
−

𝑑2
𝑖 𝑗

2𝜎(𝑠)2

)
(S22)

where 𝑑𝑖 𝑗 is the Euclidean distance from position (𝑖, 𝑗) to the kernel center, and the kernel is

normalized to sum to 1.

For the adaptive strategy, the motion uncertainty 𝜎(𝑠) varies with signal strength:

𝜎(𝑠) = 𝐷base + (𝐷true − 𝐷base)𝑒−𝑘𝑠 (S23)
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where 𝐷base = 0.1 is the minimum uncertainty, 𝐷true = 0.5 matches the true motion variability

of the robot, and 𝑘 = 2.0 is the decay rate. In the non-adaptive strategy, uncertainty remains fixed

at the true motion variability of 0.5.

The measurement update applies Bayes’ rule using a Gaussian likelihood model:

𝑏𝑡+1(𝑥) = 𝜂 · 𝑏𝑡 (𝑥) · exp
(
− (𝑧𝑡 − ℎ(𝑥))2

2𝛼2

)
(S24)

where 𝑧𝑡 is the signal strength measured by the robot at its position 𝑟 (𝑡), ℎ(𝑥) is the expected

signal strength at 𝑟 (𝑡) if the target is located at 𝑥, and 𝜂 is a normalization factor ensuring the belief

sums to 1.

Performance Evaluation We compared adaptive and non-adaptive strategies through multiple

simulation runs across environments with different signal-to-noise ratio (SNR). A run was con-

sidered successful if the robot reached within 5.0 grid units of the target. Both strategies were

evaluated using identical random seeds for paired comparison. Paired t-tests used to assess statisti-

cal significance of the observed differences in steps to target.

Understanding adaptive strategy based on Kalman gain We can understand the effectiveness

of the adaptive strategy by studying the gain of a 1-D Kalman filter. The Kalman gain (𝐾𝑡) controls

how much weight is given to a new measurement relative to the current belief, defined as:

𝐾𝑡 =
𝜎2
𝑡 |𝑡−1

𝜎2
𝑡 |𝑡−1 + 𝜎

2
𝑥

, (S25)

where 𝜎2
𝑥 is the uncertainty in the estimated target position 𝑥 and 𝜎2

𝑡 |𝑡−1 is the predicted belief

variance after the motion step.

To relate uncertainty in the signal ℎ(𝑥) to 𝜎2
𝑥 , we use the error propagation formula,

𝜎2
𝑥 =

(
𝑑𝑥

𝑑ℎ

)2
𝜎2
ℎ

=

(
𝑑𝑥

𝑑ℎ

)2
𝛼2

=
𝛼2

𝛾2𝑠2
max

·


𝑥 − 𝑥target



2(𝛾+1)
.
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Furthermore, the variance term after motion update 𝜎2
𝑡 |𝑡−1 is the sum of the posterior variance from

the previous step and the variance of the motion model:

𝜎2
𝑡 |𝑡−1 = 𝜎2

𝑡 + 𝜎2
𝑝 . (S26)

Recall 𝜎2
𝑝 = 𝜎(𝑠)2 decreases as the signal 𝑠 becomes stronger according to Equation S23.

Combining Equation S25 and Equation S26, we rewrite the Kalman gain:

𝐾𝑡 =
𝜎2
𝑡 + 𝜎2

𝑝

𝜎2
𝑡 + 𝜎2

𝑝 + 𝜎2
𝑥

. (S27)

The Kalman gain takes a value between 0 and 1, where a larger gain means that new measure-

ments are weighted more heavily relative to the prior belief.

When the robot is initially far from the target, the SNR is low, making the prior unreliable.

However, because the target is distant, the position uncertainty 𝜎2
𝑥 is also large, which naturally

leads to a small Kalman gain 𝐾𝑡 . By increasing the motion model variance 𝜎2
𝑝 , we increase 𝐾𝑡 ,

making the filter more responsive to new measurements and preventing it from getting stuck relying

too heavily on an uncertain prior.

As the robot moves closer to the target, the SNR improves, and the Kalman gain naturally

increases as 𝜎2
𝑥 decreases. If 𝐾𝑡 remains too large, the filter may overreact to measurement noise,

leading to unstable belief updates. By reducing 𝜎2
𝑝 , the Kalman gain decreases, allowing the filter

to trust past observations more, which stabilizes convergence.

Finally, the dependence of 𝐾𝑡 on the motion model variance 𝜎2
𝑝 is mediated by 𝜎2

𝑥 . When 𝜎2
𝑥 is

small, Equation S27 shows that the Kalman gain approaches 1, making it independent of 𝜎2
𝑝 . This

explains why the adaptive strategy provides the greatest advantage in noisy environments, where

large 𝜎2
𝑥 causes inefficient belief updates if 𝜎2

𝑝 is not properly adjusted.
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