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SUMMARY

Cells in natural environments, such as tissue or soil, sense and respond to extracellular ligands with intri-

cately structured and non-monotonic spatial distributions, sculpted by processes such as fluid flow and sub-

strate adhesion. In this work, we show that spatial sensing and navigation can be optimized by adapting the

spatial organization of signaling pathways to the spatial structure of the environment. We develop an infor-

mation-theoretic framework for computing the optimal spatial organization of a sensing system for a given

signaling environment. We find that receptor localization previously observed in cells maximizes information

acquisition in simulated natural contexts, including tissue and soil. Specifically, information acquisition is

maximized when receptors form localized patches at regions of maximal ligand concentration. Receptor

localization extends naturally to produce a dynamic protocol for continuously redistributing signaling recep-

tors, which when implemented using simple feedback, boosts cell navigation efficiency by 30-fold.

INTRODUCTION

Cells sense and respond in spatially structured environments,

where signal distributions are determined by various chemical

and physical processes such as substrate binding and fluid flow

(Fowell and Kim, 2021). In tissue and soil, distributions of extracel-

lular ligands can be spatially discontinuous, consisting of local

ligand patches (de Anna et al., 2021; Hodge, 2006; Kennedy

et al., 2006; Kicheva et al., 2007; Lim et al., 2015; Milde et al.,

2008; Nunan et al., 2001; Raynaud and Nunan, 2014; Russo

et al., 2016; Sarris et al., 2012; von Philipsborn et al., 2006; Weber

et al., 2013; Yang et al., 2007). In tissue, diffusive signaling mole-

cules are transported by interstitial fluid through a porous me-

dium. These molecules are then captured by cells and a non-uni-

form network of extracellular matrix (ECM) fibers, taking on a

stable and highly reticulated distribution (Kennedy et al., 2006; Ki-

cheva et al., 2007; Russo et al., 2016; Sarris et al., 2012; Weber

et al., 2013; Yang et al., 2007). For example, ECM-bound chemo-

kine (CCL21) gradients extending from lymphatic vessels take on

stable spatial structures, characterized by regions of high ligand

concentration separated by spatial discontinuities (Weber et al.,

2013). Similar observations have been made for the distribution

of other chemokines, axon guidance cues, andmorphogens in tis-

sues (Kennedy et al., 2006; Kicheva et al., 2007; Lim et al., 2015;

Sarris et al., 2012). In soil, a heterogeneous pore network influ-

ences the spatial distribution of nutrients by dictating both the

locations of nutrient sources aswell aswhere nutrients likely accu-

mulate (de Anna et al., 2021; Hodge, 2006; Nunan et al., 2001;

Raynaud and Nunan, 2014). Free-living cells detect chemical

cues released by patchy distributions of microorganisms, where

molecules are moved via fluid flow and diffusion (Hodge, 2006;

Raynaud and Nunan, 2014). Cells in these and other natural envi-

ronments experience surface ligand profiles with varying concen-

tration peaks, non-continuity, and large dynamic range (Dlamini

et al., 2020; Kennedy et al., 2006), differing strongly from smoothly

varying, purely diffusive environments.

Modern signal processing theory shows that sensing strate-

gies must adapt to the statistics of the input signals, suggesting

that spatial sensing in cells should be adapted to the spatial

structure of signaling molecules in the cells’ native environments

(Candès and Wakin, 2008). For example, when designing elec-

tronic sensor networks sensing spatial phenomena, adapting

sensor placement to the spatial statistic of the signal can

improve information acquisition (Krause et al., 2008). Further-

more, spatial navigation where sensing plays a key role may

also benefit from sensor placement adaptation, as suggested

by work from both robot and insect navigation (Huston et al.,

2015; Iida and Nurzaman, 2016). For example, when navigating

turbulent plumes, locusts actively move their antennae to

odorant locations to acquiremore information on source location

(Huston et al., 2015). In the context of cell navigation, interstitial

gradients can potentially trap cells in local concentration peaks

(Weber et al., 2013). Cells that can adapt sensing to the patchy

structure of the gradient may overcome local traps.

Traditional approaches to studying cell sensing often use high-

ly simplified environmental models, where signals are either

530 Cell Systems 13, 530–546, July 20, 2022 ª 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:zwang2@caltech.edu
mailto:mthomson@caltech.edu
https://doi.org/10.1016/j.cels.2022.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2022.05.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


uniform or monotonic, neglecting the complex spatial structure

in natural cell environments (Berg and Purcell, 1977; Endres

andWingreen, 2008; Hu et al., 2010; Mugler et al., 2016). Classic

work, beginning with the seminal paper by Berg and Purcell

(1977), studied cell sensing within homogeneous environments

(Berg and Purcell, 1977). This and subsequent works were

extended to study the detection of spatially varying concentra-

tions, where monotonic gradients remain the canonical environ-

mental model (Endres and Wingreen, 2008; Hu et al., 2010;

Mugler et al., 2016). Recent work has started to address spatial

complexity (Chou et al., 2011), but much work remains to under-

stand how cell sensing strategies are affected by natural signal

distributions, particularly spatially correlated fluctuations. Such

complexity can pose challenges to cell engineering applications,

such as CAR-T cell responses to tumor microenvironments

(Martinez and Moon, 2019). Fundamentally, it is not clear what

sense and response strategies are well adapted to operate in en-

vironments where signals take on complex spatial structures.

Interestingly, empirical observations suggest that cells might

modulate the placement of their surface receptors to exploit the

spatial structure of ligand distribution in its environment (Be-

lema-Bedada et al., 2008; Bouzigues et al., 2007; Mossman

et al., 2005; Nieto et al., 1997; Pignata et al., 2019; Shimonaka

et al., 2003; van Buul et al., 2003; Yokosuka et al., 2005). For

example, some axon guidance receptors, such as Robo1 and

PlxnA1, can dynamically rearrange on the surface of growth

cones (GCs) (Bouzigues et al., 2007; Pignata et al., 2019). In

such cases, receptors constantly rearrange, adjusting local sur-

face densities in response to changes in ligand distribution

across the cell surface. Some chemokine receptors in lympho-

cytes, such as CXCR4 and CCR2, exhibit similar spatial dy-

namics (Nieto et al., 1997; Shimonaka et al., 2003; van Buul

et al., 2003). Disrupting dynamic rearrangement of CCR2 on

the surface of mesenchymal stem cells, without changing its

expression level, severely inhibits targeted cell migration to

damaged muscle tissues (Belema-Bedada et al., 2008). How-

ever, other chemotactic receptors (such as C5aR on the sur-

face of neutrophils) remain uniform even when their ligands

are distributed non-uniformly (Vicente-Manzanares and Sán-

chez-Madrid, 2004). In addition, during antigen recognition,

T cell receptors (TCRs) take on different placements, ranging

from uniform to highly polarized, depending on the density of

antigen molecules on the surface of the opposing cell (Majzner

et al., 2020). Thus, across a diverse range of cell surface recep-

tors, we see different, even contradictory rearrangement

behavior in response to changes in environmental structure. It

remains unclear whether dynamic receptor rearrangement

has an overarching biological function across disparate biolog-

ical contexts.

Inspired by previous works that applied information maximi-

zation principles to understand the design of biological systems

for signal processing (Cheong et al., 2011; Dubuis et al., 2013;

Monti et al., 2018; Petkova et al., 2019; Sokolowski and Tka�cik,

2015; Tka�cik et al., 2008, 2009; Tka�cik and Gregor, 2021), we

formulate an information-theoretic framework and show that

spatial localization of cell surface receptors is an effective

spatial sensing strategy in natural cell environments, but rela-

tively inconsequential in purely diffusive environments. Our

framework allows us to solve for receptor placements that

maximize information acquisition in natural environments, while

generating such environments using existing computational

models of tissue and soil microenvironments. We find that

anisotropic receptor dynamics previously observed in cells

are nearly optimal. Specifically, information acquisition is maxi-

mized when receptors form localized patches at regions of

maximal ligand concentration. Optimizing receptor placement

offers a substantial gain in information acquisition over uni-

formly distributed receptors, but only in natural cell habitats,

leading to an average of � 1 bit of information gain in tissues

and soils but only � 0:01 bits in purely diffusive gradients.

The optimal strategy maximizes information by taking advan-

tage of patchy ligand distribution in natural environments, real-

locating sensing resources to a small but high signal region on

the cell surface, while explicitly ‘‘ignoring’’ ligand information at

low signal regions.

Our framework extends naturally to produce a dynamic pro-

tocol for continuously redistributing receptors across the cell

surface in response to a dynamic environment. We show

through simulation that a simple feedback circuit implements

this protocol within a cell, redistributing receptors in a signal-

dependent manner, and in doing so improving cell navigation.

Compared with cells with uniform receptor placement, cells

with this circuit achieve more than 30-fold improvement in their

ability to localize to the peak of simulated interstitial gradients.

Furthermore, our model accurately predicts spatial distribu-

tions of membrane receptors observed experimentally (Bou-

zigues et al., 2007; Nieto et al., 1997; Pignata et al., 2019; Shi-

monaka et al., 2003; van Buul et al., 2003). Our framework

easily extends to study how spatial organization of many

different cellular components, beyond receptor placement, af-

fects information processing (see discussion). Taken together,

our model serves as a useful conceptual framework for under-

standing the role of spatial organization of signal transduction

pathways in cell sensing and provides a sensing strategy that

is both effective in natural cell environments and amenable to

cell engineering.

RESULTS

An optimal coding framework allows the computation

of optimal receptor placement given spatial signal

statistics

We are interested in optimal strategies for a task we refer to as

spatial sensing. Spatial sensing is an inference task where a

cell infers external profiles of varying ligand level across its sur-

face from an internal profile of varying receptor activity across

its membrane. This task is a useful model since optimizing per-

formance on this task should improve the cell’s ability to infer

diverse environmental features.

We developed a theoretical framework to study whether

manipulating the placement of cell surface receptors can

improve spatial sensing performance. Optimizing spatial sensing

by tuning receptor placement is analogous to optimizing distrib-

uted electronic sensor network by adjusting the location of sen-

sors, which has been extensively studied in signal processing

(Krause et al., 2008). In the optimization of distributed sensor

networks monitoring spatial phenomena (Figure 1A), it is well-

known that adjusting the placement of a limited number of
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sensors can boost sensing performance, where the optimal

placement strategy is dictated by the statistics of the input sig-

nals (Caselton and Zidek, 1984; Krause et al., 2008). The collec-

tion of a limited number of receptors on the cell surface also

functions as a distributed sensor network, sensing a spatial

profile of varying ligand concentration (Figure 1A). Therefore,

we hypothesized that receptor placement can be tuned to

improve spatial sensing and that the optimal strategy depends

on the statistics of ligand profiles that cells typically encounter.

Unlike traditional works in sensor optimization which focuses

on finding a single ‘‘best’’ placement (Krause et al., 2008), cells

can rearrange their receptors within a matter of minutes (Bou-

zigues et al., 2007), leading to a potentially much richer class

of strategies.

Before presenting the general optimization problem, we set up

the mathematical framework through the lens of information the-

ory. Consider a two-dimensional (2D) cell with a 1D membrane

surface. By discretizing the membrane into m equally sized re-

gions, we modeled the membrane receptor system as m parallel

communication channels (Figure 1B). The input to these m chan-

nels isC = ðC1;.;CmÞ, whereCi is a random variable represent-

ing the amount of ligands at the ith membrane region. The recep-

tor profile r = ðr1; ::; rmÞ denotes the amount of receptors

allocated to each membrane region. The output A = ðA1;.;AmÞ
is the amount of active receptors across themembrane,which de-

pends on c and r through pðA = ajc;rÞ, themeasurement kernel.

Consider a placement strategy 4 : c/r, mapping a ligand profile

to a receptor placement (Figure 1B). For a fixed number of recep-

tors N, we are interested in the choice of 4 that maximizes the

mutual information IðC;AÞ between the channels’ inputs C and

outputs A, defined as:

IðC;AÞ =

X

c˛C

X

a˛A

pðc;aÞlog pðc;aÞ
pðcÞpðaÞ: (Equation 1)

Figure 1. Adapting receptor placements to signal (input) statistic of natural cell environments

(A) (Left) Tuning sensor placement can boost the performance of electronic sensor network. (Right) Cell surface receptors also function as a sensor network,

taking as inputs ligand profiles C across the cell surface and producing as outputs a profile of receptor activity A across the cell membrane. The optimal receptor

placement strategy 4� : c/r maps each ligand profile to a receptor placement, such that the mutual information IðC;AÞ is maximized.

(B) The problem of optimal receptor placement formulated as a resource allocation problem over parallel, noisy communication channels. The ith channel

represents the ith region of the cell membrane, with input Ci, output Ai and receptor number ri . The input statistic pðcÞ depends on the environment, and the

measurement kernel pðai jci ; riÞ is modeled as a Poisson counting process. The general formulation of the optimal strategy 4� allocates N receptors tom channels

for each ligand profile c, such that IðC;AÞ ismaximized (Equation 2). The local formulation selects the receptor placement 4�ðcÞ thatmaximizes Iðbc;baÞ, where bc is a

Poisson random vector with mean equal to c (Equation 4).

(C) (Ci) Approximating input statistic by simulating natural environments and sampling ligand profiles fcg by tiling cells uniformly across the environment; (Cii)

modeling ligand distribution in tissue microenvironment by incorporating diffusion, advection, ECM binding, degradation, and cell uptakes. (Ciii) Modeling ligand

distribution in soil microenvironment by generating bacteria distributed in spatial patches, releasing diffusive ligands.

ll
OPEN ACCESS Article

532 Cell Systems 13, 530–546, July 20, 2022



The mutual information quantifies the ‘‘amount of information’’

obtained about C by observing A. It is minimized when C and A

are independent and maximized when one is a deterministic

function of the other. All logs are taken in base 2, so information

is report in units of bits. Importantly, note the choice of m (mem-

brane bins) sets an upper bound on the mutual information and

hence sets the scale for all information value reported in this

paper (STAR Methods). Mathematically, the optimal strategy

4� can be written as

4�
pðcÞ = argmax

cc 4ðcÞR0
P
i

4iðcÞ = N

IðC;Aj4;pðcÞÞ; (Equation 2)

where N is the total number of receptors which is taken to be a

constant. Note the mutual information converges toward its up-

per bound asN increases (Figure S1A). Themutual information is

agnostic to the decoding process in that it does not assume any

details about downstream signaling, nor the exact environmental

features a cell may try to decode, expanding the scope of our

results.

To solve for 4�, we needed to specify both a measurement

kernel pðajc; rÞ and an input statistic pðcÞ. We modeled

pðajc; rÞ assuming that each receptor binds ligands locally and

activates independently. Furthermore, each local sensing pro-

cess is modeled as a Poisson counting process. These assump-

tions yield the following measurement kernel:

pðA = ajC = c; rÞ =
Ym

i = 1

mi
ai

ai!
e�mi ; (Equation 3)

where mi = ri

�
ci

ci +Kd
+a Kd

ci +Kd

�
is the average number of active re-

ceptors at the ith membrane region. Kd is the equilibrium disso-

ciation constant and a accounts for constitutive activity of recep-

tors observed in cells, including many GPCRs, which we take to

be small (a � 1) (Seifert and Wenzel-Seifert, 2002; Slack and

Hall, 2012). The bracket term represents the probability of recep-

tor activation, and the fractional term Kd

ci +Kd
ensures it is always

less than 1 (Buchwald, 2019).

Next, we specify the input statistic pðcÞ for three classes of en-

vironments: soil, tissue, andmonotonic gradient. For each class of

environment, we constructedpðcÞ empirically, by computationally

generating a ligand concentration field as the steady-state solu-

tion of a partial-differential equation (PDE), and sampling ligand

profiles (fcg) from them by evaluating the PDE solution around

cells placed at different spatial locations (Figure 1Ci) (STAR

Methods). Putting the empirical measure on the samples fcg ap-

proximates the true distribution of C. For soil, we follow mathe-

maticalmodels from (Melke et al., 2010) and (Raynaud andNunan,

2014), modeling diffusive ligands released from a group of soil

bacteria whose spatial distribution agrees with the statistical

properties of real soil colonies (Figures 1Ciii and 2A). For tissue,

we adopted models from Milde et al. (2008) and Rejniak et al.

(2013), where they modeled diffusive ligands released from a

localized source, perturbed by in vivo processes such as intersti-

tial fluid flow and heterogeneous ECM binding, leading to an im-

mobilized interstitial gradient (Figures 1Cii and 2B). We also

considered a monotonic gradient (Figure 2B) as an exponential

fit to the simulated interstitial gradient. Fitting ensures any differ-

ence between the two environments are due to differences in local

structures, not global features such as gradient decay length or

average concentration. It is important to note that the overall

framework can accommodate any choice of pðcÞ and pðajcÞ
beyond what we have considered.

We are interested in the functional relationship between ligand

profiles fcg and their optimal receptor placements f4�ðcÞg. To
this end, we computed the optimal receptor placement for

each sampled profile c individually, reducing the general formu-

lation to a local formulation. Given ligand profile c, random vector
bc represents local fluctuations of c due to stochasticity of reac-

tion-diffusion events. In the case of unimolecular reaction-diffu-

sion processes, it can be shown that bc is a Poisson vector with

mean equal to c, solution of the PDE. Therefore, we can solve

for 4�ðcÞ locally by maximizing the mutual information between
bc and the resulting output ba:

4�ðcÞ = argmax
rR0
P

i
ri = N

Iðbc; bajrÞ; (Equation 4)

where pðbaÞ =

P
cpðbajbc = cÞpðbc = cÞ. The main difference

between the general formulation of Equation 2 and local formu-

lation of Equation 4 is their dependence on the input statistic

pðcÞ. In the general formulation, the strategy 4�
pðcÞ is explicitly

parametrized by pðcÞ. In the local formulation, 4� is independent
of the choice of pðcÞ. However, differences in pðcÞ between en-

vironments will still crucially affect the set of optimal receptor

profiles that cells will actually adopt because changing pðcÞ
changes the region of the domain of 4� that is most relevant,

thus changing the optimal receptor profiles that are actually

used in different environments. For example, suppose environ-

ment A and B have input statistic pA and pB, and any ligand pro-

file observed in A is not observed in B, and vice versa. Although

4� is the same between A and B, this function is being evaluated

on entirely different ligand profiles in A compared to B, so that re-

ceptor profiles observed in the two environment will likely be very

different, in ways dictated by differences between their input sta-

tistic pA and pB. As a result, the statistical structure over the

space of ligand profiles plays an important role in determining

which receptor placement is effective, even when the place-

ments are computed locally for each ligand profile.

Receptor localization yields optimal spatial sensing in

natural environments

Optimal strategies of receptor placement are similar for soil and

tissue environment, where receptors are highly localized within

membrane positions experiencing high ligand concentrations.

Figure 2Bi shows three examples of optimal receptor place-

ments 4�ðcÞ (colored) with the corresponding ligand profile c,

one from each class of environments shown in Figure 2A. In all

three cases, the peak of each optimal receptor profile is oriented

toward the position of highest ligand concentration. Compared

with monotonic gradient, receptor profiles optimized for the

ligand profiles sampled from tissue and soil are highly localized,

with around 80% of receptors found within 10% of the mem-

brane. In general, the optimal strategy consistently allocates

more receptors to regions of higher ligand concentration, but

ll
OPEN ACCESSArticle

Cell Systems 13, 530–546, July 20, 2022 533



Figure 2. Receptor localization optimizes information acquisition in natural environments

(A) Computationally generated ligand concentration fields using PDEmodels of soil (left), tissue (interstitium) (middle), and simple exponential gradient (right, fitted

to tissue with correlation index R2
= 0:98); for each environment, zoomed-in field of view (FOV) scalebars are 10 mm, larger FOV scalebars are 50 mm, see

Table S1 for environment simulation parameters.

(B) (Bi) Example of optimal receptor profile 4�ðcÞ (colored) and the corresponding ligand profile c (gray); (Bii) entropy for each optimal receptor placements in

f4�ðcÞg colored by environment, colored triangles indicate the entropy of three receptor placements shown in (Bi); (Biii) scatter plot where each dot corresponds

to an optimal placement 4�ðcÞ, y axis is membrane position with the most receptor, x axis is membrane position with most ligand in c.

(C) Optimal efficacy h colored by environments, computed with ligand profiles fcg sampled using cells of different radius, for receptors of different constitutive

activity a; see Figure S1B for result with different bin number m.

(D) (Di) Efficacy for soils environment simulated using different values of s2bacteria, (Dii) efficacy for tissue environment simulated using different values of kECM, and

for exponential gradients fitted to each tissue (gradient). Stars correspond to parameter values used to generate (A)–(C) and (E).

(E) Scatterplot where each dot corresponds to a single pair of c and 4�ðcÞ, where c is sampled from environments as illustrated in Figure 1Ci; hc is defined in

Equation 10. Across all panels, N = 1,000, Kd = 40 nm , a = 0:1, m = 100 (see Figures 7B and S4 for h with other parameters).
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in a highly nonlinear manner. Figure 2Biii shows, across all

sampled ligand profiles fcg, the peak of receptor profiles always

align with the peak of ligand profiles. However, instead of allo-

cating receptors proportional to ligand level, receptors tend to

be highly localized to a fewmembrane positions with the highest

ligand concentrations.

Indeed, Figure 2Bii shows that optimal receptor profiles tend

to have low entropy. The entropy of receptor profile r, defined

as HðrÞ = � P
i
ri
N
log
�
ri
N

�
, can be used as a measure of localiza-

tion. Note themaximal value of this entropymeasure is limited by

the number of membrane bins m. Low entropy corresponds to

receptor profiles where most receptors are concentrated to a

few membrane positions, forming localized patches. Such high

degree of localization is partly explained by low receptor

numbers. When receptors are limited, information gain per re-

ceptor within each membrane channel is approximately inde-

pendent of receptor number (STAR Methods). Thus, the optimal

solution allocates all receptors to the channel with the highest

information content (Figure S2). In addition, receptors are

more localized for sensing in soil and tissue because locally,

they exhibit greater spatial variations in ligand concentration

comparedwith simple gradients (Figure 2A; STARMethods). Ab-

solute ligand concentration also influences the optimal strategy,

which we take to be dilute in agreement with empirical measure-

ments (Clark et al., 2015; Wang et al., 2008). In saturating envi-

ronments, the optimal solution completely switches, allocating

most receptors to regions of lowest ligand concentrations

(STAR Methods; Figure S3). In summary, the optimal placement

strategy 4� in the environments studied can be approximated by

a simple scheme, where receptors localize to form patches at

positions of high ligand concentration.

Optimally placed receptors drastically improve information

acquisition relative to uniform receptors, especially in soil and

tissue environments. To make this statement precise, we quan-

tified the efficacy of a receptor placement strategy 4 : c/ r with

respect to a set of ligand profiles fcg. First, we denote by I4 the

average amount of information acquired by cells adopting the

placement strategy 4:

I4 = CIðbc; baj4ÞDc (Equation 5)

where C ,Dc denotes averaging across the set of sample ligand

profiles fcg, and recall bc is a Poisson-distributed random vector

with mean c. In particular, we are interested in information acqui-

sition using the uniform strategy 4u (uniformly distributed recep-

tors) and the optimal strategy 4�:

Iunif: = I4u; Iopt: = I4� : (Equation 6)

The efficacy of a placement strategy 4 is the change in average

information cells acquire by adopting the strategy 4 compared

with the uniform strategy:

hð4Þ = I4 � Iunif: (Equation 7)

In particular, we are interested in the optimal efficacy:

hð4�Þ = Iopt � Iunif; (Equation 8)

which we will refer to simply as h when the dependency is clear

from context. For a particular hð4�Þ, the set of ligand profiles fcg

referred to in its definition is always the same set that 4� is opti-

mized for. The larger h is, themore beneficial it is for cells to place

receptors optimally rather than uniformly. We found that h is an

order of magnitude larger for soil and tissue environment

comparedwith a simple gradient (Figure 2C). This difference per-

sists across cells of different size and across a wide range of re-

ceptor parameter values (Figures 2C, 7B, S4, and S5A). In other

words, placing receptors optimally rather than uniformly benefits

cells in complex, natural environments substantially more than

cells in simple, monotonic gradients. Note that differences be-

tween tissue and monotonic gradient are due to differences in

local spatial structure, not global features such as gradient

decay length or global average concentration, as both parame-

ters were made to be identical between the two environments.

Lastly, although the mutual information is an exponential mea-

sure, so an improvement by one bit has different meaning

depending on the baseline Iunif, this fact does not hinder interpre-

tation of h as Iunif is similar between the three environments

considered (Figure S4A).

In addition to the large difference in optimal efficacy (h) be-

tween natural environments and simple gradients, Figure S4

shows similar differences exist when comparing other metrics

assessing the benefit of optimizing receptor placement, such

as the relative information gain (ðIopt � IunifÞ=Iunif) and the absolute

increase in the number of distinguishable input signals (2Iopt �
2Iunif ). For example, optimizing receptor placement increases

the number of distinguishable input states by 40 in tissue, while

optimizing the same receptors in the (fitted) gradient environ-

ment leads to an increase of 1 state (Figure S4A). Note that in

the limit of strong constitutive receptor activity, all placement

strategies become equivalent to uniformly distributed receptors.

Since receptor activation in the absence of ligands reduces sta-

tistical dependence between ligand level and receptor activity,

the average information acquisition I4 for any strategy 4 con-

verges to zero for large a, driving information gain compared

with the uniform strategy to zero (Figure S4A).

For both soil and tissue environment, the optimal efficacy hde-

pends on a key parameter in their respective PDE model. We

illustrate this dependence by adjusting the value of each respec-

tive parameter, sampling new ligand profiles fcg, solving for

optimal placements f4�ðcÞg, and computing h. Figure 2D shows

how h changes as we adjust environmental parameters. In soil, h

drops substantially as ligand sources (bacteria) become more

aggregated (Figure 2Di), corresponding to an increase in the

parameter s2bacteria of the random process (STAR Methods)

used to model bacterial distribution (star corresponds to empir-

ical value from Raynaud and Nunan [2014]). The decrease in h is

intuitive since increasing the extent of aggregation of sources

makes the environment appear more like a simple gradient

generated from a single ligand source. In tissue, optimal efficacy

dropped when most ligands were found in solution, instead of

bound to the ECM (Figure 2Dii), corresponding to low ECM-bind-

ing rate (kECM). For reference, star indicates the empirical value of

kECM for the chemokine CXCL13 (Yang et al., 2007). Compared

with its fitted monotonic gradient, h is higher in the interstitial

gradient for all ECM-binding rates (Figures 2Dii and S5B). In tis-

sue, gradients made up of ECM-bound ligands are ubiquitous,

suggesting that the optimization of receptor placement is highly

relevant.

ll
OPEN ACCESSArticle

Cell Systems 13, 530–546, July 20, 2022 535



Optimal efficacy (h) is larger in soil and tissue because ligand

profiles that cells encounter in such environments tend to be

patchier, having most of the ligands concentrated in a small sub-

set of membrane regions. We make this statement precise by

quantifying patchiness of a ligand profile c using a measure of

sparsity:

sparsityðcÞ = 1 � c

cRMS

; (Equation 9)

where the root-mean-square cRMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

P
ic

2
i

q
and c =

1
m

P
ici is

the average concentration of c across the membrane. A ligand

profile with a sparsity of one has all ligands contained in a single

membrane region, whereas a uniform distribution of ligands has

a sparsity of zero. Next, we defined an efficacy measure hc for

each ligand profile c:

hc = Iðbc; baj4�Þ � Iðbc; baj4uÞ = Iopt;c � Iunif;c; (Equation 10)

where again 4u denotes uniform receptor distribution. Unlike h as

defined in Equation 8, hc does not involve the averaging across

the entire set fcg through C ,Dc, it measures improvement in infor-

mation gain for only a single ligand profile c. The larger hc is, the

more useful the optimal placement is for sensing c compared

with a uniform profile. Each dot in Figure 2E corresponds to a

ligand profile sampled from an environment, as illustrated in Fig-

ure 1Ci. Figure 2E shows that (1) across a wide range of concen-

trations, sparser ligand profiles tend to induce higher efficacy hc
and (2) ligand profiles sampled from soil and tissue tend to be

sparser compared with profiles from the corresponding mono-

tonic gradient. Taken together, since signals cells encounter in

natural environments tend to have sparse concentration profiles,

cells can improve their spatial sensing performance by localizing

receptors to regions of high ligand concentration.

In summary, the value of optimizing receptor placement as a

sensing strategy depends strongly on the environmental struc-

ture. Patchy ligand distributions found in tissue and soil environ-

ments makes optimizing receptor placement a highly effective

sensing strategy. Our result demonstrates that uncovering effec-

tive cell sensing strategies requires a careful consideration of the

spatial structure of the cells’ natural habitat.

Spatial sensing via the optimal strategy is robust to

imprecise placements caused by biological constraints

Despite the optimal strategy 4� being highly localized and pre-

cisely oriented, we found that neither features are necessary to

achieve high efficacy. Given the stochastic nature of biochemical

processes in cells, this robustness is crucial as it makes the strat-

egy feasible in cells. Fortunately, receptors do not need to adopt

4� precisely in order to obtain substantial information gain. To

illustrate, we perturb the optimal placements and show that

sensing efficacy persists when receptors partially align with

ligand peak and localize weakly. For soil and tissue, we circularly

shift and flatten (by applying amoving average) all optimal recep-

tor profiles f4�ðcÞg computed from sample ligand profiles to

obtain f4pðcÞg, the corresponding set of perturbed profiles.

Different degrees of shifting and flattening represents different

degrees of misalignment and weakened localization, respec-

tively. Figure 3A shows results of different perturbations

(colored) applied to a receptor profile (black). To assess the ef-

fect of these perturbations on sensing, we compute the efficacy

hð4pÞ of the perturbed profiles and compare it with the optimal

efficacy hð4�Þ. The heatmap in Figure 3B shows the ratio of per-

turbed to optimal efficacy for various combinations of perturba-

tions, across soil and tissue. Figure 3Bi shows two examples of

perturbations (red dots) that drastically alter the receptor profile

while still achieving high efficacy. The red and gray curve in the

Figure 3. Optimal efficacy hð4�Þ is robust to minor deviations in receptor placement away from the optimal form

(A) The effect of different degrees of shifting and flattening applied to a receptor profile (black curve).

(B) Colors of heatmap represent ratio of perturbed efficacy hð4pÞ to optimal efficacy hð4�Þ for different combinations of shifting and flattening, computed for ligand

profiles fcg sampled from either soil or tissue; call-out boxes corresponds to different sets of perturbations, showing the average of the optimal f4�ðcÞg (gray) and
perturbed f4pðcÞg (red) receptor placements, after all ligand profile peaks were centered; red numbers indicate the value on heatmap; cell radius = 10 mm.
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call-out box represents what the ‘‘average’’ perturbed and

optimal profiles look like, respectively. They are obtained by

circularly shifting each profile in f4pðcÞg and f4�ðcÞg so the

peak of c is center, followed by averaging across the set of

shifted profiles element-wise. Clearly, highly localized receptors

(> 80% of receptors found within 10% of membrane) are not

necessary for effective sensing. In fact, compared with uniformly

distributed receptors, a modest enrichment of receptors ori-

ented toward the ligand peak (4-fold relative to uniform) already

provides substantial information gain (Figure 3B). Importantly,

enrichment of receptors (around the ligand peak) greater than

4- to 5-fold has been observed for different membrane receptors

(van Buul et al., 2003; Wang et al., 2019), and in some cases,

nearly all receptors redistribute toward the ligand peak (Bou-

zigues et al., 2007). Such robustness holds across different cell

sizes and efficacy metric (Figure S6). In tissue, the heatmap of

Figure 3Bi also shows that weakly localized receptors (large

flatten factor) aremore robust tomisalignment (large shift factor).

Altogether, the robustness results of Figure 3 suggest that

biochemical implementations of receptor localization could

improve sensing in natural or engineered cells, even in the pres-

ence of stochastic fluctuations in a biological circuit that induce

imperfect localization. Moreover, the magnitude of receptor

enrichment (around the ligand peak) previously observed in cells

is sufficient to obtain substantial information gain (Bouzigues

et al., 2007; van Buul et al., 2003; Wang et al., 2019).

Optimization framework extends naturally to produce a

dynamic protocol for sensing time-varying ligand

profiles

Our framework extends naturally to produce a dynamic protocol

for rearranging receptors in response to dynamically changing

ligand profiles. So far, we have viewed ligand profiles as static

snapshots and considered instantaneous protocols for receptor

placement. In reality, cells sensewhile actively exploring their envi-

ronment, so that the ligand profile it experiences is changing in

time, both due to intrinsic changes in the environment state as

well asdue to themotionof thecell. As the ligandprofilect changes

over time,wewant the receptorprofile rt tochange inan ‘‘efficient’’

manner to improve information acquisition (Figure 4A). Specif-

ically, we obtain a dynamic protocol by extending our framework

to account for both information acquisition anda ‘‘cost’’ for chang-

ing receptor location.Wequantify the costofmoving receptors us-

ing the Wasserstein-1 distance W1ðrA;rBÞ, which is the minimum

distance receptors must move across the cell surface to redis-

tribute from profile rA to rB (STAR Methods). For a cell sensing a

sequenceof ligandprofiles fctgTt = 1 over time, theoptimal receptor

placement r�t for ct now depends additionally on r�t� 1, the optimal

placement for the previous ligand profile:

r�t = argmax
rR0
P

i
ri = N

�
Iðbct; bajrÞ � gW1

�
r�t� 1; r

��
; (Equation 11)

where pðbaÞ =

P
cpðbajbctÞpðbctÞ, and gR 0 represents the cost of

moving one receptor per unit distance. The cost g implicitly en-

codes a timescale for receptor redistribution. Smaller g means

less ‘‘cost’’ is associated with redistributing receptors; hence,

the receptor profile becomes more dynamic. The exact relation-

ship between g and the speed of receptor redistribution depends

on both receptor properties and the environment, see

Figures S7A–S7D for an example of how receptor speed scales

with g. For g = 0, the formulation of Equation 11 reduces to the

original static formulation of Equation 4. This dynamic formula-

tion admits a natural interpretation as maximizing information

rate (information per receptor-distance moved) instead of abso-

lute information gain. For t = 1, we define r�t according to the

original formulation. Hence, we refer to the dynamic protocol

of Equation 11 as the general optimal strategy since it encom-

passes 4�. Figure 4B illustrates two salient features of this dy-

namic protocol. First (left), when the peak of the previous recep-

tor profile r�t� 1 is near the peak of the current ligand profile ct, r
�
t

is obtained by shifting receptors toward the current ligand peak

but not aligning fully. Second (right), when the peak of the previ-

ous receptor profile is far from the current ligand peak, some re-

ceptors are moved to form an additional patch at the current

ligand peak (Figure S7F shows how changing g affects the

Figure 4. A dynamic receptor placement protocol based on maximizing rate of information gain

(A) Schematic showing a cell moving along a path (gray curve) sensing a sequence of ligand profiles fctg at points (crosses) along the path, using receptor

placements fr�t g generated by the dynamic protocol.

(B) Accounting for transport cost, the optimal placement strategy is modified to localize receptors to an intermediate position between subsequent ligand peaks

or form multiple receptor peaks.
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receptor behavior in Figure 4B). Receptor properties such as the

strength of constitutive receptor activity (a) also affect receptor

redistribution dynamics. For small a, receptors localize more

readily to align with new ligand peaks because the mutual infor-

mation term in Equation 11 becomes dominant over the cost of

redistribution (Figure S7E). Although the formulation of Equa-

tion 11 is quite complex, this general optimal strategy can be

achieved by a simple receptor feedback scheme.

Simple feedback scheme rearranges receptors to

achieve near-optimal information acquisition

We show that a positive feedback scheme implements the gen-

eral optimal strategy (Equation 11), dynamically redistributing

receptors into localized poles to achieve near-optimal informa-

tion acquisition. Asymmetric protein localization is a funda-

mental building block of many complex spatial behaviors in

cells, involved in sensing, movement, growth, and division

(Macara and Mili, 2008). Many natural localization circuits are

well characterized down to molecular details (Hegemann

et al., 2015; Zhu et al., 2020). Even synthetic networks have

been experimentally constructed in yeast, capable of reliably

organizing membrane-bound proteins into one or more local-

ized poles (Chau et al., 2012). Such works demonstrate the

feasibility of engineering new spatial organization systems

in cells.

Using a PDE model of receptor dynamics, we show that sim-

ple, local interactions can redistribute receptors to achieve near-

optimal information acquisition, for both static and dynamic sig-

nals. The core feedback architecture of our circuit design uses

similar motifs as have been demonstrated in existing synthetic

biology circuits (Chau et al., 2012). Figure 5A illustrates the three

mechanisms (arrows) in our feedback scheme that affects re-

ceptor distribution (r), which can be expressed mathemati-

cally as

Figure 5. Positive feedback scheme redistributes receptors to achieve near-optimal sensing efficacy for both static and dynamic signals

(A) The cell is modeled as a one-dimensional membrane lattice with a well-mixed cytosol. Receptors are subject to three redistribution mechanisms: endocytosis

(koff), activity-dependent incorporation into membrane (hAiRcyto), membrane diffusion (dm); the value of h sets the feedback strength between receptor activity

and the rate with which receptors incorporate into the membrane; h = 43 10� 3s� 1, dm = 13 10� 2mm2s�1, koff = 1310� 1s� 1 (Table S2).

(B) Receptor profiles (yellow) generated by simulating the feedback scheme for an initially uniform set of receptors, against a static ligand profile from tissue and

soil, cell radius = 10 mm.

(C) Ratio of scheme efficacy hð4sÞ to optimal efficacy hð4�Þ for static signals fcg sampled from soil and tissue, stars indicate parameter values used for simulation

in (B).

(D) (Top) Kymograph showing the entire temporal sequence of receptor profiles of a moving cell; (bottom) position of ligand peak aligned in time with position of

receptor peak as generated by the feedback scheme.

(E) Snapshots of receptor profiles taken at select time points.

(F) Ratio of scheme efficacy hð4sÞ to optimal efficacy hð4�Þ for a sequence of signals fctg sampled by translating a cell through soil and tissue environment, stars

indicate parameter values used for simulation in (D) and (E); cell radius = 10 mm (see Figures S9B and S9C for results with cell radius = 5 mm).

(G) Histogram showing the distribution of ligand peak (gray) and receptor peak (yellow) position on the membrane of the cell from (D), dashed black line indicates

the direction of the global gradient with respect to membrane positions. See Table S2 for feedback scheme simulation parameters.
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vrðx; tÞ
vt

= DV2
membr � koff r + hARcyto; (Equation 12)

where x denotesmembrane position and t denotes time. The first

term represents lateral diffusion of receptors on the membrane

with uniform diffusivity D. The second term represents endocy-

tosis of receptors with rate koff. The last term represents incorpo-

ration of receptors to membrane position i from a homogeneous

cytoplasmic pool (Rcyto) with rates hAi, where h a proportionality

constant and Ai is the local receptor activity (see STAR Methods

for model details). Activity-dependent receptor recruitment pro-

vides the necessary feedback to enable ligand-dependent re-

ceptor redistribution. Recent works suggest that activity-depen-

dent receptor recruitment can be achieved through biased

docking and fusion of secretory vesicles that carry the receptors,

to regions of high receptor activity (Hegemann et al., 2015; Ki-

noshita-Kawada et al., 2019; Wang et al., 2019). Budding yeasts

Ste2 receptors achieve feedback using an interacting loop with

intracellular polarity factor Cdc42 (Hegemann et al., 2015).

Note that our feedback scheme is only meant to illustrate one

possible implementation of the dynamic rearrangement proto-

col. Feasible alternatives such as activity-dependent endocy-

tosis or microtubule-dependent receptor redistribution have

also been proposed, providing a range of biochemical strategies

for implementation of the optimal placement strategy (Bouzigues

et al., 2007; Suchkov et al., 2010).
Given a fixed ligand profile c, Figure 5B shows our feedback

scheme can, within minutes, localize receptors (yellow) toward

the position of maximum ligand concentration. The rapid locali-

zation is robust to changes in koff and h across at least an order

of magnitude (Figure S9A). We denote the steady-state receptor

profile generated by our scheme in response to ligand profile c

as 4sðcÞ. As Figure 5B shows, scheme-generated profiles are

far less localized than their optimal counterpart 4�ðcÞ. Despite
this, Figure 5C shows scheme efficacy hð4sÞ are close to that

of the optimal value hð4�Þ. Recall hð4�Þmeasures the absolute in-

crease in average information acquired using optimally placed

instead of uniform receptors. Therefore, the scheme efficacy

hð4sÞ makes a similar comparison between scheme-driven and

uniform receptors. In Figure 5C, we see scheme efficacy is

robust to variations in both endocytosis (koff) and average mem-

brane incorporation rate (ChAiDi), with other parameters fixed to

empirical values (Marco et al., 2007). Stars represent parameters

used to simulate profiles in Figure 5B.

Our feedback scheme (Equation 12) can continuously rear-

range receptors in response to changes in ligand profile, exhib-

iting dynamics similar to the optimal dynamic protocol (Equa-

tion 11). Figures 5D and 5E shows a time-varying receptor

profile, generated by the feedback scheme in a cell translating

across the tissue environment. In this dynamic setting, the

scheme can still induce asymmetric redistribution of receptors.

Figure 5D (top) shows this dynamic asymmetry through a kymo-

graph of a sequence of receptor profiles f4sðctÞg. As desired,

snapshots along this sequence show receptors localize toward

regions of high ligand concentration (Figure 5E). Receptor place-

ments generated by our scheme exhibit features of the dynamic

protocol shown in Figure 4B. First, as the ligand peak changes

position slightly, the receptor peak gets shifted in the same di-

rection after a delay. Figure 5D (bottom) illustrates this phenom-

ena by aligning the time trace of both peak positions. Here, a shift

in the ligand peak (gray) is often followed by a corresponding

shift in receptor peak (yellow) after an appreciable delay; hence,

there is only partial peak-to-peak alignment. Second, if the

ligand peak changes position abruptly, a second receptor peak

forms, oriented toward the new ligand peak. Figure 5Eiii illus-

trates this clearly by showing a new receptor peak forming pre-

cisely after a large shift in ligand peak position (Figure 5D). We

assess the performance of our scheme by comparing scheme-

generated placements f4sðcÞg and optimal placements

f4�ðcÞg corresponding to the same sequence of ligand profiles

fctg. Figure 5F shows that for cells moving in soil and tissue,

scheme efficacy hð4sÞ (star) is not far from the optimal value

hð4�Þ. Furthermore, scheme efficacy is robust to variations in

endocytosis (koff) and average incorporation rate (ChAiDi). Taken

together, our feedback scheme organizes receptors to achieve

near-optimal information acquisition, in both static and dynamic

environments.

Our feedback scheme can align receptors with the global

gradient direction, suggesting that this scheme may allow cells

to escape local ligand concentration peaks within interstitial gra-

dients. On the one hand, Figure 5G shows that the peak of ligand

profiles (gray), as experienced by cells, do not always agree with

the direction of the global gradient (dashed line)—a known

feature of interstitial gradients (Weber et al., 2013). On the other

hand, receptors organized by the feedback scheme (yellow)

align very well with the global gradient direction. The effect of

the feedback scheme comes from its ability to localize receptors

and account for past receptor profiles. The latter allows the cur-

rent receptor profile to carry memory of past ligand profiles that

the cell has encountered, enabling a form of spatial averaging

over ligand peaks. Alignment of receptors to the global gradient

should provide substantial boost to cell navigation performance,

especially in non-monotonic, interstitial gradients.

Feedback scheme enables cells to search quickly and

localize precisely in simulated interstitial gradients

Cells using our feedback scheme effectively localizes to the

ligand source of simulated interstitial gradients, while cells with

uniform receptors become trapped away from the source by local

concentration peaks. Immune cells can navigate toward the

source of an interstitial gradient in a directed, efficient manner

(Figure 6A;Weber et al., 2013). Efficient navigation can be difficult

in complex tissue environments, partly due to the existence of

local maxima away from the ligand source, potentially trapping

cells on their way to the source (Figure 6B). By simulating cell nav-

igation using standard models of directional decoding (STAR

Methods), we found that cells with uniform receptors can indeed

become trapped during navigation. Figure 6C demonstrates this

behavior through the trajectories of individual cells with uniform

receptors (blue), as they consistently become stuck within spe-

cific locations of the environment. On the other hand, using the

same method of directional decoding, cells with scheme-driven

receptors (orange) reliably reach the source in an efficient

manner. Figure 6D illustrates this difference through a histogram

of the time it took for a cell to reach the source, created by simu-

lating cells starting at uniformly sampled locations 50 mm from the

source, moving at a constant speed of 2 mm/min. Remarkably, for

the circuit parameter values chosen, only 2% of cells (13/600)
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with uniform receptors reached the source within 1 h, compared

with 73%of cells (436/600) using the feedback scheme, boosting

success rate by more than 30-fold. In fact, Figure 6D shows that

> 97%of cells with uniform receptors fail to reach the source even

after 6 h, as expected due to being trapped. Improvement in suc-

cess rate persists across a wide range of scheme parameters (or-

ders-of-magnitude) and directional decoding schemes (Fig-

ure S10). We emphasize that the poor performance of cells with

Figure 6. In simulated interstitial gradient, cells localize to source quickly and precisely when receptors are redistributed by the feedback

scheme instead of uniformly distributed

(A) (Left) Interstitial CCL21 gradient, (right) white curves represent haptotactic trajectories of dendritic cells (Weber et al., 2013).

(B) (Top) Schematic of a navigation task where a cell (green flag) in a region of an interstitial gradient move toward the source (red flag) by sensing spatially

distributed ligands and decoding source direction locally, the ligand field shown is a region of the tissue environment in Figure 2A obtained through PDE

simulation (STARMethods); (bottom) red curve shows the tissue ligand field averaged over the y direction, and black curve is the fitted exponential gradient, scale

bars, 10 mm.

(C) Sample trajectories of repeated simulations of cells navigating with uniform receptors (blue) and with scheme-driven receptors (orange), all scale bars, 10 mm.

(D) (Left) Histogram of time taken to reach source across 600 cells at different starting positions of equal distance from source, note the rightmost bar includes all

cells that did not reach the source after 8 h; (right) barplot showing percentage of runs completed in 1 h (success rate), see also Figure S10 for success rate across

different simulation parameters.

(E) Same type of data as in (D) for cells navigating in an exponential gradient (fitted to the interstitial gradient used to generate (D)).

(F) Red stripes (left) represent growth cones moving within specific lamina along a slit gradient (right schematic), scale bars, 40 mm (Xiao and Baier, 2007).

(G) (Top) Schematic of a navigation task where a cell (green flag) senses its environment in order to remain close to source, solid white line represents cell

trajectory, dotted white line demarcates a distance of 5 mm from ligand source (see Table S3 for tissue simulation parameters), an ellipse-shaped cell is used for

this simulation to mimic navigating growth cone; (bottom) red curve shows the tissue ligand field averaged over the y direction, and black curve is the fitted

exponential gradient, scale bars, 3 mm.

(H) Sample trajectories of repeated simulations of cells performing task with either uniform or scheme-driven receptors, all scale bars, 3 mm.

(I) (Left) Histogram of time spent by cell at various distance from the ligand source (measured from source to farthest point on cell, perpendicular to source edge)

aggregated across 600 cells starting at different positions, moving for 2 h near the ligand source; (right) bar plot shows percentage of time the cell spent more than

5 mm from source (error rate), see also Figure S10 for error rate across different simulation parameters.

(J) Same data type as (I) for cells navigating in an exponential gradient (fit to interstitial gradient of [I]).
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uniform receptors is only partially due to inaccuracy associated

with decoding local gradients. Indeed, cells that only follow local

gradients have trouble finding the global peak (ligand source) in

simulated interstitial gradients, as shown by the fact that cells

simulated to move precisely along local gradient directions (di-

rection of maximal increase in ligand concentration across the

cell’s surface) become trapped at local ligand peaks on their

way to the source (Figure S10C). As expected, Figure 6E shows

that the difference in performance between uniform and

scheme-driven receptors is relatively less pronounced in the sim-

ple gradient (black curve Figure 6B line plot)—a 2-fold difference

in success rate. We discuss the analogy between our feedback

scheme and the infotaxis algorithm (Vergassola et al., 2007) in

the discussion section.

Our feedback scheme can also help cells remain within a high-

ly precise region along a chemical gradient. During certain devel-

opmental programs, cells must restrict their movements within a

region along a gradient in order to form stable anatomical struc-

tures. GCs demonstrate an extraordinary ability in accomplish-

ing this task. Axon projections of retinal ganglion cells can remain

within a band of tissue (lamina) of only 3–7 mmwide, at a specific

point along a chemical gradient (Figure 6F) (Xiao and Baier, 2007;

Xiao et al., 2011). Figure 6G illustrates how we assess our

scheme’s ability to achieve this level of precision. We initiate a

cell at a gradient source and track the proportion of time the

cell wasmore than 5 mmaway from the source. As the cell moves

along the gradient, uneven ligand distribution in the environment

can lead the cell to move erroneously away from the source. Fig-

ure 6H shows that cells with uniform receptors (blue) can indeed

make excursions away from the source. However, cells with the

feedback scheme (orange) reliably stay close to the source for an

extended period of time. We quantify this difference by pooling

from 600 trajectories of cells starting at different positions along

the source, decoding source direction and navigating for 2 h.

Figure 6I shows the number of time steps the cells collectively

spent at specific distances from the source. For the circuit

parameter values chosen, cells with uniform receptors are found

more than 5 mm away from the source 15% of the time (22,204/

144,000 steps). On the other hand, cells with the feedback

scheme do so only 2% of the time (3,287/144,000 steps), a

7-fold reduction in error rate. Difference in error rate persists

for a wide range of scheme parameters and directional decoding

schemes (Figures S10D and S10F). Similar improvement in per-

formance is found for cells navigating in fitted exponential gradi-

ents (black curve Figure 6G line plot). Figure 6J shows the error

rate is reduced by 10-fold from cells with uniform to scheme-

driven receptors (10% versus 1%). This result is intuitive as the

gradients used for this task has extremely short decay length

(5 mm) to mimic in vivo gradients that GCs encounter. As a result,

the fitted exponential becomes similar to the simulated intersti-

tial gradient. Taken together, our feedback scheme is function-

ally effective in simulated patchy gradients found in tissue,

enabling cells to solve common navigation tasks with substan-

tially improved accuracy and precision.

Optimal efficacy accurately predicts experimental

observations of membrane receptor distribution

In addition to generating optimal sensing strategies for simu-

lated environments, our framework can be used to predict re-

ceptor distribution of natural cell surface receptors (Figure 7A),

using both the environmental structure in which the receptors

function and their biological properties. In addition to environ-

mental structure, receptor properties such as cell surface

expression level (N) and binding affinity (Kd) also play a role

in determining the optimal strategy by affecting the measure-

ment kernel (Equation 3). For a simulated tissue environment,

Figure 7B shows that despite offering substantial information

gain (h � 1) for a wide range of N and Kd values, optimizing re-

ceptor placement offers nearly zero gain in information

(h � 10� 2) when N=Kd is large. High N and low Kd improve in-

formation acquisition by allowing the receptor activities to be

more sensitive to changes in input level, and since the total

amount of information available to the cell is fixed, the amount

of additional gain that can be made by optimizing receptor

placement is reduced.

Figure 7B suggests that for real cell surface receptors, wemay

be able to predict their membrane distribution by specifying both

their environment and biological parameters (N, Kd). Specifically

for receptors functioning in tissue, we predict those with param-

eters that fall within the high h regime (Figure 7B) are more likely

to adapt the optimal localized distribution. Although data are

limited, empirical observations of real receptors agree with this

prediction. Comparing data across cell surface receptors from

multiple cell types found in human tissue, Figure 7B shows that

receptors (red dots) with parameters corresponding to large h

have been observed to localize in non-uniform environments

(Figures 7Ai–7Aiii). Importantly, the localized receptors concen-

trate at the region of the membrane with the highest ligand con-

centration, consistent with the theoretically optimal strategy.

Such localization is clearly illustrated in Figures 7Aii and 7Aiii.

Figure 7Aii shows, within 5 min, uniform CCR5 redistributes to-

ward the source of CCL5 placed at the bottom edge. Figure 7Aiii

shows GABA receptors localize over time to the membrane re-

gion experiencing the highest GABA concentration (arrow indi-

cates source direction). Receptors (white dots) with parameters

(Kd, N) corresponding to small h, however, are always uniformly

distributed (Figure 7Aiv), even when the environment is non-uni-

form. Furthermore, although Figure 7B is based on a fixed a

(constitutive receptor activity), the striking relationship between

receptor organization and optimal efficacy h holds for values of

a spanning at least two orders-of-magnitude (Figure S11B).

More detailed comparisons between the experimental receptor

distributions and the theoretical optimum is unfortunately not

possible because quantitative descriptions of the ligand profiles

experienced by the observed cells are not available. This agree-

ment between theory and observations is not meant to imply that

evolution optimizes receptor placement. Indeed, there are key

caveats such as variations in receptor expression over time

and differences between the environments of different recep-

tors. Our theory does, however, provide a framework for study-

ing natural variations in the spatial organization of receptors,

such as differences observed between chemotactic receptors

in the same T cell (Nieto et al., 1997).

DISCUSSION

A rich collection of works, spanning diverse areas including

developmental biology, systems biology, and neuroscience,
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put forth the idea of optimizing mutual information to predict the

design of information processing systems in biology (Cheong

et al., 2011; Dubuis et al., 2013; Monti et al., 2018; Petkova

et al., 2019; Sokolowski and Tka�cik, 2015; Tka�cik et al., 2008,

2009; Tka�cik and Gregor, 2021). For example, information maxi-

mization principles have been applied to derive fundamental

limits on the fidelity of information transfer in biochemical net-

works (Cheong et al., 2011; Mehta et al., 2009). Inspired by these

works, we formulated an information-theoretic framework that

enables us to compute effective cell sensing strategies across

different environments. We applied the framework to different

signaling microenvironments, including tissues and soils, to

discover a receptor localization strategy that substantially im-

proves both cell sensing and navigation. More broadly, our

work has a series of conceptual and practical implications. Our

theory suggests a functional role for spatial organization in

cellular information processing, conceptually showing how

spatially organized intracellular components can be used by

cells to more accurately infer the state of its external environ-

ment, here, through sensing and chemoreceptors. Furthermore,

our theory conceptually shows how spatial organization of a

cell’s sensing apparatus can actually reflect spatial structure of

its environment. Similar results are found in neuroscience, but

it is interesting to see how such an efficient coding perspective

can help understand spatial organization within a cell. Lastly,

our theory has practical consequences for cell engineering.

Currently, most synthetic circuits function without spatial modu-

lation and are studied in well mixed compartments. Our work

shows how spatial control over synthetic sense and response ar-

chitectures can provide new strategies for engineering circuits

that function in natural environments.

Adapting framework to optimize other cell properties

with respect to environmental statistic

One can easily adapt our framework to understand how variables

other than receptor placement affects spatial sensing. Although

this work is about optimizing receptor placement, the key quantity

being tuned is the spatial distribution of receptor activity; hence,

our result is relevant to any variable that (1) affects receptor activity

and (2) redistributes across space. To illustrate, consider a gener-

alized model of receptor activation:

E½Aijci� = fðqiÞ
�

ci

ci +Kd

+ a
Kd

ci +Kd

�
; (Equation 13)

where f is an unspecified function of an arbitrary set of variables qi,

and fðqiÞ represents the ‘‘effective’’ number of receptors at posi-

tion i. In this work, we considered the case where qi = ri and

fðriÞ = ri, but other factors such as phosphorylation level

and membrane curvature also affect local receptor activity Ai

Figure 7. Optimal efficacy h predicts observed distributions of cell surface receptors using their surface expression level and binding affinity

(A) Observed membrane distributions of receptors in heterogeneous environments, (Ai) white arrowheads indicate Slit receptor Robo1 of commissural growth

cones navigating in an interstitial Slit gradient (Pignata et al., 2019). (Aii) Human T lymphocytes migrating toward a CCL5-loaded pipette (bottom edge of each

panel), top row of panels show brightfield images of a cell taken at different time, bottom row show the corresponding fluorescence images of GFP-tagged CCR5

on the cell surface (time stamp at lower right corner of panel) (Gómez-Moutón et al., 2004), (Aiii) effect of a GABA gradient on the distribution of GABAARs in a

growth cone (GC). The arrow indicates direction of the source. (Left) Transmission image of GC. (Center, right) Images show individual quantum dots-tagged

GABAARs detected by their fluorescence, recorded during the first 10 min of stimulation (center) and during the next 10 min (right) (Bouzigues et al., 2007), Copy-

right (2007) National Academy of Sciences, USA. (Aiv) C5aR-GFP remains uniformly distributed in response to a point source of a C5aR agonist, delivered by

micropipette (white dot), open arrowheads point to leading edges of cells (Servant et al., 1999). Scale bars: 5 mm in (Ai) and (Aiii) and 10 mm in (Aii) and (Aiv).

(B) Optimal efficacy h for different values of Kd and N; values computed using the tissue environment, where the ratio between average ligand concentration and

Kd is fixed, a = 0:1; red dots correspond to receptors that polarize in heterogeneous environments (CCR2, CXCR4, CCR5, GABAAR, and Robo1), white dots

represent receptors that are constantly uniform (IL-2R, TNFR1, TGFbR2, CR3, and C5aR), roman numerals correspond to receptors in (A), see Table S4 for all

receptor data.
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(Rangamani et al., 2013). In this way, one can optimize spatial

sensing by tuning variables other than receptor placement, by

specifying alternative forms of f. For example, it is known that

given uniformly distributed receptors, those found in membrane

regions of higher curvature can exhibit higher activity (Rangamani

et al., 2013). Suppose we want to know the optimal way to adjust

cell shape to maximize information acquisition, by assuming a

linear relationship between local curvature bi and ‘‘effective’’ re-

ceptor number, i.e., fðri;biÞ = biri. Given uniform receptors and

a constraint on total contour length (or area) of the membrane,

we quickly arrive at the optimal solution since this problem is

now identical to our original formulation. The optimal strategy is

to increasemembrane curvature at regions of high ligand concen-

tration, by making narrow protrusions (STAR Methods).

Connection between information acquisition and

navigation

We showed that a receptor placement strategy aimed at maxi-

mizing information rate can boost cell navigation performance.

Since information content increases toward the ligand source,

receptors are more likely to move toward the side of the mem-

brane closer to the source rather than away, enforcing move-

ment up gradients. Furthermore, the trade-off between infor-

mation acquisition and receptor redistribution in Equation 11

can be viewed as combining exploitative and exploratory ten-

dencies, where larger redistribution ‘‘cost’’ favors exploitation.

This strategy is similar in principle to the infotaxis algorithm

(Vergassola et al., 2007), where one can view receptors as

‘‘navigating agents,’’ whose movements guide the cell toward

the target. Although the idea is quite intuitive, the exact relation-

ship between navigation and information acquisition requires

further investigation. On the one hand, the feedback scheme

is most effective in the case of limited sampling of inputs

(Figures S10B and S10E), which suggests maximizing informa-

tion content indeed helps with navigation. On the other hand,

moving receptors to maximize information rate is much more

effective as a navigation strategy compared with only maxi-

mizing absolute information (Figure S8).

Optimizing spatial organization at different stages of

information processing

Optimizing information transmission by organizing effectors in

space can happen at all stages of signal processing within the

cell but is likely most effective at the receptor level. The most

obvious reason is due to the data processing inequality, which

states that post-processing cannot increase information. There-

fore, only optimization at the level of receptor activation can in-

crease the total amount of information that is available to the

cell. The second reason is due to the ‘‘hourglass’’ topology of

cell signaling networks, which represent the fact that a large

number of signaling inputs converge onto a small number of ef-

fectors internal to the cell (Csete and Doyle, 2004). For example,

G-protein-coupled receptors, one of the largest group of cell sur-

face receptors, drive downstream signaling through the same G

proteins. This feature makes optimizing spatial organization at

later stages of information processing very difficult, since infor-

mation can be easily lost by diffusion of effector molecules acti-

vated by different inputs, which ends up ‘‘mixing’’ different

spatial signals.
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Diz-Muñoz, A., Thurley, K., Chintamen, S., Altschuler, S.J., Wu, L.F., Fletcher,

D.A., and Weiner, O.D. (2016). Membrane tension acts through pld2 and

mtorc2 to limit actin network assembly during neutrophil migration. PLoS

Biol. 14, e1002474.

Dlamini, M., Kennedy, T.E., and Juncker, D. (2020). Combinatorial nanodot

stripe assay to systematically study cell haptotaxis. Microsyst. Nanoeng.

6, 114.

Dubuis, J.O., Tka�cik, G., Wieschaus, E.F., Gregor, T., and Bialek, W. (2013).

Positional information, in bits. Proc. Natl. Acad. Sci. USA 110, 16301–16308.

Dytso, A., Faus, M., and Poor, H.V. (2020). The vector poisson channel: on the

linearity of the conditional mean estimator. IEEE Trans. Signal Process. 68,

5894–5903.

Endres, R.G., and Wingreen, N.S. (2008). Accuracy of direct gradient sensing

by single cells. Proc. Natl. Acad. Sci. USA 105, 15749–15754.

Evans, T.A., and Bashaw, G.J. (2010). Functional diversity of robo receptor

immunoglobulin domains promotes distinct axon guidance decisions. Curr.

Biol. 20, 567–572.

Fitzgerald, K.A., O’Neill, L.A., Gearing, A.J., and Callard, R.E. (2001). The

Cytokine Factsbook and Webfacts (Elsevier).

Fowell, D.J., and Kim, M. (2021). The spatio-temporal control of effector T cell

migration. Nat. Rev. Immunol. 21, 582–596.

Friedl, P., Maaser, K., Klein, C.E., Niggemann, B., Krohne, G., and Z€anker, K.S.

(1997). Migration of highly aggressive mv3 melanoma cells in 3-dimensional

collagen lattices results in local matrix reorganization and shedding of a2

and b1 integrins and CD44. Cancer Res. 57, 2061–2070.

Gantner, S., Schmid, M., D€urr, C., Schuhegger, R., Steidle, A., Hutzler, P.,

Langebartels, C., Eberl, L., Hartmann, A., and Dazzo, F.B. (2006). In situ quan-

titation of the spatial scale of calling distances and population density-inde-

pendent n-acylhomoserine lactone-mediated communication by rhizobacteria

colonized on plant roots. FEMS Microbiol. Ecol. 56, 188–194.

Gehr, G., Gentz, R., Brockhaus, M., Loetscher, H., and Lesslauer, W. (1992).

Both tumor necrosis factor receptor types mediate proliferative signals in hu-

man mononuclear cell activation. J. Immunol. 149, 911–917.
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METHOD DETAILS

Formulation of optimization problem

In this paper, we developed a theoretical framework to study whether manipulating the placement of cell surface receptors can

improve the spatial sensing performance. Optimizing spatial sensing by tuning receptor placement is analogous to optimizing distrib-

uted electronic sensor network by adjusting the location of sensors, which has been extensively studied in signal processing (Krause

et al., 2008). Before presenting the general optimization problem, we set up the mathematical framework through the lens of infor-

mation theory. Consider a two-dimensional (2D) cell with a 1Dmembrane surface. By discretizing themembrane intom equally-sized

regions, we modeled the membrane receptor system as m parallel communication channels (Figure 1B). The i-th channel takes as

inputCi ˛N0, a random variable denoting ligand count at the i-th region of the membrane surface. Given ri ˛N0 receptors, this chan-

nel produces as output Ai ˛N0, a number of active receptors that is random due to stochastic nature of receptor activation and

randomness in Ci. Given m channels representing the entire cell membrane, our model comprised four key mathematical objects:

ligand profile C = ðC1;.;CmÞ, receptor placement r = ðr1;::;rmÞ, active receptor profile A = ðA1;.;AmÞ, and measurement kernel

PðA = ajC = c;rÞ. The inputC � pðcÞ is now the entire ligand profile across the cell surface. Each realization c ofC has probability

pðcÞ of being observed. We explain below how pðcÞ can be constructed to represent statistics of ligand profiles cells naturally

encounter (see input statistic). The receptor profile r denotes the number of receptor allocated to eachmembrane region. The output

A � pðaÞ is the number of active receptors across the membrane, which depends on c and r through pðajc; rÞ, the measurement

kernel. We explain below how this kernel can be modeled (see measurement kernel).

Consider a placement strategy 4 : c/r, that maps a ligand profile to a receptor placement. In our general optimization problem

(Figure 1B), we are interested in the choice of 4 thatmaximizes the amount of information the cell can obtain regardingC by observing

A, for a fixed number of receptors N. Formally, we quantify this information using the mutual information,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All computationally generated data, analysis scripts

and plotting scripts

This paper CaltechDATA: https://doi.org/10.22002/D1.2149

Image of cell surface Robo1 distribution Pignata et al., 2019 https://doi.org/10.1016/j.celrep.2019.08.098
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IðC;AÞ =

X

c˛C

X

a˛A

pðc;aÞlog pðc; aÞ
pðcÞpðaÞ: (Equation 14)

The mutual information is minimized when C and A are independent, and maximized when one is a deterministic function of the

other. Since pðc;aÞ = pðajc; r = 4ðcÞÞpðcÞ, each summand in the mutual information will be affected by the choice of 4. Taken

together, we arrive at our general formulation of the optimal strategy 4�:

4�
pðcÞ = argmax

cc 4ðcÞR0
P

i
4iðcÞ = N

IðC;Aj4; pðcÞÞ; (Equation 15)

where N is the total number of receptors. The subscript pðcÞ is meant to emphasize the dependence of the optimal strategy on the

input statistics.

To solve for 4�
pðcÞ, we needed to specify both a measurement kernel pðajc; rÞ and an input statistic pðcÞ. The input statistic pðcÞ for

an environment represents the probability that a cell in that environment will encounter the ligand profile c.

Measurement kernel

Wemodel pðajc; rÞ assuming that each receptor binds ligands locally and activates independently of other receptors. These assump-

tions allow us to factorize pðajc; rÞ as follows,

PðA = ajC = c; rÞ =
Ym

i = 1

PðAi = aijCi = ci; riÞ: (Equation 16)

Each local sensing process involves probabilistic ligand-receptor interaction which can be viewed as a Bernoulli process. In this

way, the number of active receptors follows a Binomial distribution, which can be approximated with the Poisson distribution when

the probability of successful binding event is low. Indeed, experimental measurements have shown that receptor occupancy is well-

approximated by the Poisson distribution (Ueda et al., 2001), such that

PðAi = aijCi = ci; riÞ =
mi

ai

ai!
e�mi ; (Equation 17)

where mi = ri

�
ci

ci +Kd
+a Kd

ci +Kd

�
. The bracket term represents the probability of activation for a receptor experiencing ci ligands. Kd is

the equilibrium dissociation constant and a represents constitutive receptor activity, which we take to be small (a � 1). In other

words, the number of active receptors Ai given ligand count ci is a Poisson random variable with mean mi. Equations 16 and 17

together specify the measurement kernel.

Input statistic

Next, we specify the input statistic pðcÞ which will be determined by spatial distribution of ligands, thus differ between different

classes of environment. Suppose a circular cell samples its environment by binding nearby ligands. The cell will encounter

certain spatial profiles of ligands more often than others, and such statistics will likely depend on the type of environment

the cell lives in. In this work, we studied three classes of environments: soil, tissue, and monotonic gradient. Closed form

models do not exist for ligand profile statistics of natural environments. Therefore, we take an empirical approach, generating

instances of each environment as the steady-state solution of a partial-differential equation (PDE) models and directly sample

ligand profiles from them (see section on modeling chemical environment for details on all PDE models). For soil, we adopted

mathematical models from Melke et al. (2010) and Raynaud and Nunan (2014), modeling diffusive ligands released from a

group of soil bacteria whose spatial distribution agrees with the statistical properties of real soil colonies (Figures 1Ciii and

2A). For tissue, we adopted models from Milde et al. (2008) and Rejniak et al. (2013), where they modeled diffusive ligands

released from a localized source, perturbed by in vivo processes such as interstitial fluid flow, non-uniform ECM binding and

cell uptake, to represent an interstitial gradient (Figures 1Cii and 2B). We also considered a simple (monotonic) gradient (Fig-

ure 2C) which is an exponential fit to the simulated interstitial gradient (Figure 2B). Fitting ensures any difference between the

two environments are due to differences in local structures, not global features such as gradient decay length or average con-

centration. For each environment, we obtain a ligand concentration field cðxÞ as the steady-state solution of a PDE. Then, we tile

it with a cell of fixed size and evaluate the concentration field along each cell membrane to obtain a set of ligand profiles de-

noted fcg (Figure 1Ci). Putting the empirical measure on the samples fcg approximates the true distribution of C. It is important

to note that although we modeled pðcÞ and pðajcÞ in these ways, the overall framework can accommodate any alternative

choices of model.

For these choices of pðcÞ and pðajcÞ, we aimed to study the functional relationship between ligand profiles fcg and their optimal

receptor placements 4�ðcÞ. To this end, we optimized receptor profiles for each sampled profile c individually, reducing the general

problem to a local formulation. Given ligand profile c, the random vector bc represents local fluctuations of c due to stochasticity of

reaction-diffusion events. In the case of unimolecular reaction-diffusion processes, it can be shown that bc is a Poisson random vector

with mean equal to c, solution of the PDE. Therefore, we can solve for 4�ðcÞ locally by maximizing the mutual information between bc
and the resulting output ba:
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4�ðcÞ = argmax
rR0
P

i
ri = N

Iðbc; bajrÞ; (Equation 18)

where pðbaÞ = Pcpðbajbc = cÞpðbc = cÞ and N is the total receptor number. We assume r to be real-valued instead of integer-valued

when solving (Equation 18), this is reasonable as long as N is not too small.

The main difference between the general formulation of Equation 15 and local formulation of Equation 18 is their dependence on

the input statistic pðcÞ. In the general formulation, the strategy 4�
pðcÞ is explicitly parametrized by pðcÞ. In the local formulation, 4� is

independent of the choice of pðcÞ. However, differences in pðcÞ between environments will still crucially affect the set of optimal re-

ceptor profiles that cells will actually adopt. This is because changing pðcÞ changes the region of the domain of 4� that is most rele-

vant, thus changing the optimal receptors profiles that are actually used in different environments. For example, suppose environ-

ment A and B have input statistic pA and pB with non-overlapping support, meaning that any ligand profile observed in A is not

observed in B, and vice versa. Although 4� is the same between A and B, this function is being evaluated on entirely different ligand

profiles in A compared to B, so that receptor profiles observed in the two environment will likely be very different, in ways dictated by

differences between their input statistic pA and pB. As a result, the statistical structure over the space of ligand profiles plays an

important role in determining which receptor placement is effective, even when the placements are computed locally for each ligand

profile.

The constrained nonlinear optimization problem of Equation 18 was evaluated using the fmincon routine of Matlab 2021 (MATLAB

Optimization Toolbox, 2021a). The Sequential Quadratic Programming algorithm was used to ensure accurate solutions that may

exist near the boundary of the feasible region. Furthermore, the analytical gradient of the objective function, shown in Equation 37,

was supplied to ensure faster convergence.

Bin number and mutual information

An important point to emphasize is that the choice of m (number of discrete membrane bins) sets a scale for all information values

reported in the paper, because themutual information (IðC;AÞ) is bounded by the entropy of its input which scales logarithmically with

m. We derive such an upper bound on IðC;AÞ by first considering the following general property of mutual information. For any pair of

discrete random variables X and Y, taking values in X and Y, respectively, their mutual information IðX;YÞ can be equivalently ex-

pressed as,

IðX;YÞ =

X

x˛X ;y˛Y
pðX;YÞðx; yÞlog

pðX;YÞðx; yÞ
pXðxÞpY ðyÞ

=

X

x˛X ;y˛Y
pðX;YÞðx; yÞlog pXjY = yðxÞ �

X

x˛X ;y˛Y
pðX;YÞðx; yÞlog pXðxÞ

= �
X

y˛Y
pYðyÞHðXjY = yÞ �

X

y˛Y
pXðxÞ log pXðxÞ

= HðXÞ � HðXjYÞ:

(Equation 19)

Since X and Y are discrete random variables, HðXjYÞ must be non-negative, which implies,

IðX;YÞ%HðXÞ: (Equation 20)

Furthermore, suppose X = ðX1;.;XmÞ is a discrete, multivariate random variables, then we can bound its entropy HðXÞ using the

fact that the joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set:

HðXÞ%
Xm

i = 1

HðXiÞ

%m max
i

HðXiÞ:
(Equation 21)

SinceC = ðC1;.;CmÞ and A = ðA1;.;AmÞ are both discrete (multivariate) random variables, Equations 20 and 21 both apply and

we immediately get the following bound on the mutual information IðC;AÞ:
IðC;AÞ%m max

i
HðCiÞ; (Equation 22)

wherem is the number of membrane bins. To simplify Equation 22 further, we will need to consider a specific sensing environment.

Let us consider a cell sensing an average of cmolecules distributed uniformly across space. In this simple environment, the number

of ligand molecules at each of the m membrane bin are identically represented by a Poisson random variable with mean c= m:

Ci � Poisðc=mÞ; i = 1;.;m: (Equation 23)

Since all components Ci are now identically distributed, Equation 22 reduces to:

IðC;AÞ%mHðCiÞ; (Equation 24)

where Ci � Poisðc =mÞ. The entropy of a Poisson random variable Ci with parameter l takes on the form:
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HðCiÞ = l½1 � logðlÞ�+ e� l
XN

k = 0

lk logðk!Þ
k!

; (Equation 25)

where l = c=m. Combining Equations 24 and 25 gives the bound:

IðC;AÞ%mHðCiÞ

%m

 
c

m
½1 � logðc=mÞ�+ e� c=m

XN

k = 0

ðc=mÞk logðk!Þ
k!

!

% c½1 � logðc=mÞ�+ e� c=m
XN

k = 2

ck logðk!Þ
k!mk� 1

% c½1 � logðc=mÞ�+ 1

m

XN

k = 2

c
k logðk!Þ
k!

;

(Equation 26)

where the second term goes to zero asm goes to infinity since the infinite sum converges. For largem, therefore, we obtain an upper

bound on the mutual information IðC;AÞ that scales logarithmically with the number of membrane bins m,

IðC;AÞ % cð1 � logðcÞÞ+ clogðmÞ: (Equation 27)

Figure S1A shows this upper bound (red) for c = 1. As further validation of Equation 27; Figure S1A shows that as we increase

receptor number N, IðC;AÞ converges toward the derived upper bound. Furthermore, the result that optimizing receptor placement

is significantly more beneficial in natural environments compared to simple gradients holds for a wide range of membrane bin

numbers, as shown in Figure S1B where the absolute information gain (h, Equation 8) is significantly larger in natural environments

compared to simple gradients, for a wide range of m values.

Theoretical properties of Poisson channels

In information theory, the Poisson channel is a canonical model used to study communication of information by random discrete oc-

currences in time that obey Poisson statistics. We show that we can map our receptor activation model directly onto this canonical

model. As a result, wemake use of existing results from information theory regarding the Poisson channel to 1) show that the localized

receptor placement strategy described in the main text holds across most ‘‘reasonable’’ biochemical models of receptor activation,

and 2) provide intuition for how different factors such as ligand concentration can alter the optimal strategy.

Mapping receptor model to the canonical Poisson channel model

We begin by showing how a single membrane receptor channel can be mapped to the canonical scalar Poisson model. The same

argument applies for mappingmultiple parallel membrane receptor channels to the canonical vector Poissonmodel introduced in the

next section.

Recall the receptor model of Equation 17 we used to represent the number of active receptors A for a given ligand level c, which is

motivated by empirical measurements of receptor activity,

pðA = ajC = c; rÞ = ma

a!
e�m; m = r

�
c

c+Kd

+a
Kd

c+Kd

�
: (Equation 28)

Although this model of receptor activation consists of many biochemical details, we can map it directly onto the canonical scalar

Poisson model,

Y jX � PoisðbXÞ (Equation 29)

where X is a scalar input, Y is a scalar output, and b$ is a scaling variable. Such a model defines a Poisson channel whose output is a

Poisson random variable conditioned on the input Xwith its mean equal to bX, where X is an arbitrary input random variable. Wemap

this channel model maps onto our model of receptor activation for a single membrane region, by defining X, b in the following way:

X : = fðCÞ = C

C+Kd

+a
Kd

C+Kd

;

b : = r;

(Equation 30)

where X represents the probability of receptor activation, r denotes the number of receptors. From this set of definitions, it follows

that Y = A is the number of active receptors. Note that b from Equation 29 is a constant value, rather than a function like the place-

ment strategy 4. Therefore, Equation 30 agrees with our local formulation of Equation 18, and matches the general formulation of

Equation 15 if 4 is a constant function. An important consequence of this mapping is that we can now study the quantity

IðX;YÞ since,
IðX;YÞ = IðfðCÞ;AÞ

= IðC;AÞ; (Equation 31)
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where the second line follows from the fact that the mutual information is invariant to invertible transformations f. Since most physical

models of receptor activity (f) are strictly increasing functions of ligand count, hence invertible, theoretical properties of IðX;YÞwhich

we discuss here directly applies to many receptor models beyond what is considered in this work, such as models with signal ampli-

fication and receptor cooperativity. Note that we are leaving the probability distribution PðXÞ unspecified, which againmakesmany of

the following results valid for many choices of f.

Relating properties of IðX;YÞ to receptor sensing

Having established the relationship IðX;YÞ = IðC;AÞ, we now use the scalar Poisson model to illustrate how theoretical properties of

the mutual information IðX;YÞ agrees with our intuition of ligand sensing via receptor binding. We specialize to the case where X is a

non-negative random variable which is sufficient for our problem as X only takes values between 0 and 1. In this setting, Theorem 2 of

Guo et al. (2008) gives the partial information gain for the scalar Poisson channel as,

d

dr
IðX;YÞ = E½XlogX � E½XjY �logE½XjY ��: (Equation 32)

An immediate consequence of Equation 32 is that the mutual information IðX;YÞ (hence IðC;AÞ) is strictly increasing in the scaling

variable (receptor number), which follows from the fact that the right side of Equation 32 is non-negative due to Jensen’s inequality

since x log x is a convex function. The fact that IðX;YÞ is strictly increasing in r agrees with the intuition that increasing the number of

receptors should increase the amount of information the cell can acquire about its external environment.

Observe that the right hand side of Equation 32 is exactly theminimummean loss in estimating X based onY under the loss function

Lðx1; x2Þ = x1logðx1=x2Þ � x1 + x2. Using this fact, one can show that IðX;YÞ is a concave function of r, which again agrees with the

intuition that since the total amount of information availableHðXÞ is fixed, incremental gain in information acquisition must diminish as

more receptors are added. Importantly, the fact that IðX;YÞ is an increasing, concave function of the scaling variable r holds across all

models of receptor activation (Equation 30). In particularly, the concavity of IðX;YÞ is a general phenomena and not a result of satu-

ration from ligand binding.

Mapping full membrane receptor model to vector Poisson channel model

We will now rewrite our local optimization problem of Equation 18 using the canonical vector Poisson channel model. By doing so, we

will be able to use theoretical properties of the vector Poisson model to provide additional insight into the optimal solution, and expand

the result beyond the specific receptor model used in the main text. By a similar argument as in the scalar Poisson case, the full mem-

brane receptor model considered in our work (Equation 3) maps exactly onto the canonical vector Poisson channel model, defined as

Y
		X �

Ym

i = 1

PðYijXÞ =

Ym

i = 1

Pois
�
Yi

		ðFXÞi
�

(Equation 33)

where the random vector X = ðX1;X2;.;XmÞ maps to the probability of receptor activation across the m discretized membrane re-

gions, the random vector Y = ðY1;Y2;.;YmÞmaps to the random vector of active receptors A = ðA1;A2;.;AmÞ, the channel matrix

F˛R
m3m
+

can map onto receptor placement r = ðr1; r2;.; rmÞ such that F = diagðrÞ. This mapping represents the fact that recep-

tors bind ligands locally and activate independently of other receptors. We introduce F for completeness, showing that this model

can accomodate situations where there are crosstalks between channels, leading to non-zero terms in the off-diagonal. Since the

equivalent of Equation 31 holds for the vector model, we can rewrite the optimization problem in Equation 18 as,

r� = argmax
rR0
P

i
ri = N

IðX;Y jrÞ: (Equation 34)

By working with Equation 34, we derive results that hold for manymodels of receptor activation, including all models where activity

is a monotonic function of ligand level.

Reformulation of receptor optimization in terms of partial information gain

We reformulate Equation 34 in terms of the partial derivatives vIðX;YÞ=vri, which provides additional insight into the optimal solution.

According to the Karush-Kuhn-Tucker (KKT) conditions, the following must hold at the optimal solution r� for 1% i%m,

d

dri
IðX;Y jr�Þ = l � mi;

mir
�
i = 0;

(Equation 35)

where miR0 and l are the KKT multipliers. Another way to interpret the equations above is that for all channels where the optimal

receptor number r�i is non-zero, their partial derivatives
d
dri

IðX;YÞjr� must be equal. Put another way, optimal solution occurs when

incremental information gain is matched across channels. Since whenever the partial derivatives do not all agree, then one can

always move receptors from the channel with a smaller partial derivative to one with higher partial derivative to achieve a higher

mutual information.

Asymptotic of the gradient of mutual information at small N

We show that when total receptor number is low, the partial information gain depends only on the properties of X, the probability of

receptor activation. This result allows us to directly solve for the optimal solution at the lowN regime. Theorem 1 of Wang et al. (2014)
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gives the gradient of mutual information between input and output of the vector Poisson channel IðX;YÞ, with respect to the matrix

F as,

VFIðX;YÞij = E


Xj logðFXÞi

�
� E



E½Xj

		Y �logE


ðFXÞi

		Y
��
: (Equation 36)

Specializing to the setting where F is a diagonal matrix with diagðFÞ = r, the derivative of mutual information with respect to re-

ceptor number at position i is,

d

dri
IðX;YÞ = E½Xi logXi� � E½E½XijY �logE½XijY ��: (Equation 37)

This derivative can be interpreted as the information gain at the i-th channel per receptor added.

When total receptor number (N) is low, corresponding to all scaling variables (frig) being small, we can express Equation 37 as a

function of just the random variable X. First, using Lemma 1 from Dytso et al. (2020), we have

riE½XijY = y� = ðyi + 1ÞpY ðy + 1iÞ
pY ðyÞ

= ri

E
h
ðXiÞyi + 1e� riXi

Q
msi

1

ym!
ðXmÞyme� rmXm

i

E

Q

mðXmÞyme� rmXm

� :

(Equation 38)

Therefore, for ri > 0, we have

E½XijY = y� =
E
h
ðXiÞyi + 1e� riXi

Q
msi

1
ym !
ðXmÞyme� rmXm

i

E

Q

mðXmÞyme� rmXm

� : (Equation 39)

Now using monotone convergence theorem, we obtain

lim
r1 ;.;rm/0+

E½XijY = y� =
E
h
ðXiÞyi +1

Q
msi

1
ym !
ðXmÞyme� rmXm

i

E

Q

mðXmÞym
� (Equation 40)

The above limit holds for any path, and also holds for all value of y including zero. Evaluating the above limit at y = 0 we have

lim
r1 ;.;rm/0+

E½XijY = 0� = E½Xi�: (Equation 41)

Applying this limit to Equation 37 gives the desired result:

lim
r1 ;.;rm/0+

v

vri
IðX;YÞ = E½Xi logXi� � E½Xi�logE½Xi�; (Equation 42)

which we denote as

vI0

vri
: = lim

r1 ;.;rm/0+

v

vri
IðX;YÞ: (Equation 43)

In this limit, the partial derivatives are independent of receptor number. Intuitively, when receptor numbers are low, the effect of

diminishing return that comes from having many receptors should be weak. Importantly, this result holds for arbitrary distribution

PðXÞ, hence it holds for any environmental statistic and model of receptor activation. As we show in the next section, this fact allows

us to solve for the optimal solution r� exactly in the low N limit.

Factors affecting optimal receptor placement

Total receptor number

Optimal receptor placement can be strongly localized when receptors are limited in quantity. When receptor number is small, Equa-

tion 42 shows that the d
dri
IðX;YÞ becomes independent of receptor number. This result implies that IðX;YÞ is maximized when all re-

ceptors are allocated to the channel with the largest partial derivative d
dri
IðX;YÞ, resulting in strong receptor localization. We can see

this by first noting that in the limit of small N, Equation 42 and Taylor’s theorem allows us to write the mutual information as a linear

function of r,

IðX;YÞ =

Xm

i = 1

vI0

vri
ri (Equation 44)

Hence, our optimization problem becomes a linear program with the following form:

maximize aT r

subject to 1Tr = rtot; rR0;
(Equation 45)
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where ai = vI0=vri. Suppose the ai’s are sorted in increasing order (with corresponding ri’s rearranged as well),

a1 % a2%/< ak = / = am� 1 = am (Equation 46)

Denote amax : = am, we have

aTr% amax

�
1Tr
�
= amaxrtot (Equation 47)

for all feasible r, with equality if and only if

rk + /+ rm = rtot: (Equation 48)

The optimal solution is then to allocate all receptors among the channels with maximal partial information gain vI0=vri, in any

manner. This result is quite intuitive. If the channel information gains are fixed, we allocate all receptors to the channel with the highest

gain. Since Equation 42 is valid for all non-negative random variable X, this result holds for arbitrary environmental statistics. Further-

more, since vI0=vri = aiR0 due to Jensen’s inequality, the optimal solution remains unchanged if we replace the equality constraint

by an inequality 1Tr%N. Again, since we allow PðXÞ to be arbitrary, this optimal solution holds for any environmental statistic and

model of receptor activation. Figure S2 illustrates this result by optimizing across two Poisson channels for different number of re-

ceptors (N).

In line with the KKT condition of Equation 35; Figure S2 shows the optimal receptor distribution across the two channels (dotted

lines) occurs precisely where their partial derivatives (solid lines) are equal. Even though channel 2 (orange) experience an average

ligand concentration that is only 5% higher than channel 1, the optimal solution allocates nearly all receptors (98%) to channel 2 when

N is small. As N increases, this asymmetry of the optimal solution reduces significantly, resulting in a 5% difference in receptor num-

ber between the two channels when N = 200. In agreement with results we derived, strong receptor localization occurs when N is

small due to the fact that d
dri
IðX;YÞ becomes nearly independent of receptor number (note the difference in y-range across the three

plots in Figure S2).

Absolute ligand concentration and dynamic range

In addition to receptor number, environmental factors can strongly influence receptor placement. Intuitively, one would expect the

larger the difference between two channels’ input ligand concentration, the larger the asymmetry should be in their receptor alloca-

tion. Figure S3A confirms this intuition, showing that as the relative difference in average ligand concentration sensed between two

channels increase, receptor distribution between the two channels becomes more asymmetric. Figure S3A also suggests two addi-

tional features of the optimal strategy that are less intuitive,

1. As ligand concentration increases, optimal strategy switches from allocating more to allocating less receptors to region of

higher ligand concentration

2. When ligand concentration are either high or low, optimal receptor placement can become highly localized, concentratingmost

receptors to a few channels

The first feature can be seen by observing the fact that as E½C1� increases in Figure S3A, the optimal receptor distribution r�1=N (gray

to black) changes from being below 0.5 to above 0.5, even though E½C2�>E½C1� for all cases plotted. The second case can be seen by

observing the slope of the graphs. As E½C1� becomes either high (black) or low (gray), the optimal receptor distribution becomesmore

sensitive to ðE½C2� � E½C1�Þ=E½C1�, the relative difference in average input level. For a minor difference in concentration of < 5%,

nearly all receptors become allocated to one of the two channels.

Both of these observations are indeed general features of the optimal strategy and we can explain both using vI0=vri defined in

Equation 42. We can gain further intuition of both features from the shape of the binary entropy function (Figure S3C).

1. Figure S3B shows that when E½X1� is low, vI0=vr1 is an increasing function in E½X1�, suggesting that more receptors should be

allocated to channels with higher probability of receptor activation (i.e. ligand concentration). However, this monotonicity

switches as E½X1� increases, with vI0=vr1 becoming a decreasing function in E½X1�. The point at which monotonicity of vI0=

vr1 switches (dashed black line) matches precisely with when the optimal strategy switches from allocating more receptors

to region of higher probability of receptor activation to region of lower probability, as shown by the solid black curve passing

the dashed red line. Thus feature #1 can be fully explained by the gradient of mutual information. This switch in strategy is intu-

itive when we consider the binary entropy function. Recall that Xi maps to the probability of receptor activation in the i-th chan-

nel, so it shares a similar interpretation as the success probability p of the binary entropy function. The entropy functionHðpÞ is
maximized when the success probability (analogously receptor activation) is neither high nor low (Figure S3C). Thus it can be

less useful to place more receptors at regions of higher ligand concentration, since those receptors will simply stay activated,

being uninformative of the input.

2. Figure S3B shows that the slope of vI0=vr1 is maximized when E½X1� is either low or high. The larger the difference in the

partial derivatives between two channels, the more receptors will need to be allocated before their partial derivative

agree, a necessary condition for achieving optimality according to Equation 35. Therefore, a small relative difference in input

concentration between channels can lead to large difference in information gain per receptor, when absolute ligand concen-

tration is either high or low (relative to Kd), leading to strong localization of receptors. This behavior can also be explained using
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the binary entropy function, specifically the fact that the rate of change in entropy is maximized at low and high success prob-

ability (Figure S3C). Analogously, placing receptors in regions where likelihood of activation is 0 or 1 is useless from an infor-

mation perspective (zero entropy/uncertainty in output), so all receptors should be allocated to a region with non-zero entropy,

no matter how small the difference in likelihood of activation (thus ligand concentration) is.

Chemical microenvironment models

Soil chemical microenvironment

In soil, free-living unicellular eukaryotes can sense and respond to signaling ligands secreted by soil bacteria.We followmathematical

models described in (Raynaud and Nunan, 2014) and (Melke et al., 2010), modeling the spatial distribution of ligands in two steps: 1)

model the spatial distribution of bacteria in soil, and 2) model each bacteria as an independent point sources of ligands.

We follow the procedure outlined Raynaud and Nunan (2014), which allows us to generate realistic bacterial distributions found in

soil. This procedure involves sampling from a spatial statistical model, based on Log Gaussian Cox Processes (LGCP) fitted to image

data of observed bacterial distribution in soil. In a LGCP, the observed number of bacteria per unit area is modeled as a Poisson pro-

cess in which the rate parameter is treated as being the exponential of a Gaussian process. Specifically, we consider Gaussian pro-

cesses with an exponential covariance function,

CðrÞ = s2
bacteriae

� r=b; (Equation 49)

so the Gaussian process (and the LGCP) is fully determined by three parameters, its mean (m), variance (s2bacteria), and scale (b). In the

limit as s2bacteria/0, we obtain a homogeneous Poisson process. The average intensity of a LGCP (number of bacteria per unit area) is

given by:

l = em+ s2
bacteria=2 (Equation 50)

We used parameters reported in Raynaud and Nunan (2014), with m = � 7:52, s2bacteria = 1:9, and b = 25, to simulate a bacterial

density of approximately 109cells/g on a 10003 3000mm2 rectangular domain (containing approx. 4000 cells). These are the default

parameters unless otherwise stated in the main text. We used RStudio v1.3 (RStudio Team, 2015) with packages spatstat (Baddeley

et al., 2015) and RandomFields (Schlather et al., 2020) to generate all bacteria distributions.

Given a spatial distribution of bacteria, we model the distribution of secreted molecules using standard reaction-diffusion models

(Melke et al., 2010). Specifically, suchmodels treat each bacteria as a static, independent sources, producing ligands with rate a that

diffuse (D) and degrade (g). The resulting ligand concentration field is then the solution of the following partial-differential equa-

tion (PDE):

vcðx; tÞ
vt

= ajbacteria +DDc � gc; (Equation 51)

Rather than approximating each parameter of Equation 51, we model the ligand distribution produced by a bacteria using a 2D

Gaussian density profile, and directly fit the Gaussian profile to empirical measurements. The concentration c at a given position

x in the domain is then the sum over all such Gaussian profiles evaluated at x, which can be expressed mathematically as

cðxÞ =

X

q˛U

Cffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

(

�

			
			x � q

			j2

2s2

)

(Equation 52)

where U represents the set of bacterial positions generated using the LGCP model. C represents the total concentration of each

Gaussian profile, and s determines the width of the profile, both of which are assumed to be uniform across all bacteria. We extract

both parameters based on a geostatistical block kriging analysis of the spatial distribution of AHL in soil (C chosen such that mean

concentration (across the entire spatial domain) is approximately 0.6 nM, s = 9mm) (Burton et al., 2005; Gantner et al., 2006; Sheng

et al., 2017; Wang and Leadbetter, 2005).

Tissue chemical microenvironment

We follow mathematical models of ligand distribution in tissue outlined in Rejniak et al. (2013) and Milde et al. (2008), simulating a

tissue environment using a PDE model that incorporates four transport mechanisms: (1) free diffusion, (2) ECM binding, (3) fluid

advection, (4) cellular uptake. The spatial domain is a rectangle of size 300mm 3 900mm. We model ligands being supplied through

fluid flows from the left boundary of the domain, and penetrate the interstitial space between immobilized cells. Soluble ligands are

then transported by diffusion and fluid flow, and become immobilized upon binding to an extracellular matrix (ECM) made up of net-

works of interconnected fibers containing ligand binding sites. We explicitly represent both ECM-bound (cb) and soluble forms of the

ligand (cs), so that the total ligand concentration cðx; tÞ at position x and time t is equal to,

cðx; tÞ = csðx; tÞ+ cbðx; tÞ: (Equation 53)

Mathematically, we can describe the dynamics of the soluble fraction csðx; tÞ as follows:

vcs

vt
= kjboundary � uðx; tÞ,Vcs +DDcs � bccsjcells � kECMðeðxÞ � cbÞcs � gscs: (Equation 54)

ll
OPEN ACCESS Article

e8 Cell Systems 13, 530–546.e1–e12, July 20, 2022



1. The first term, k, represents production/release of molecule at the left boundary.

2. The second term represents fluid transport, where uðx; tÞ is the velocity field of the interstitial fluid with input flow speed uin at

the left boundary. We impose zero-velocity condition on the top and bottom boundary.

3. The third term represents diffusion with D as the ligand diffusion coefficient.

4. The fourth term represents cellular uptake with rate bc, a process that only occurs near immobilized cells distributed across the

domain.

5. The 5th term represents ECM binding. The concentration of ECM binding site eðxÞ at position x is generated using a minimal

model of ECM protein distribution (see paragraph on ’’Generating ECM fiber network’’). Binding occur with rate proportional to

eðxÞ � cbðx; tÞ, the level of available ECM binding site. Since the on-rate of ECM binding is much larger than the off-rate, we

assume the off-rate to be zero.

6. The last term represents enzymatic degradation of ligand.

The dynamics of ECM-bound fraction cbðx; tÞ is much simpler, involving a term corresponding to ECM binding, a degradation term

due to enzymatic decay.

vcb

vt
= kECMðeðxÞ � cbÞcs � gbcb: (Equation 55)

To generate a ligand concentration field c, we take k to be non-zero for a brief period of time, representing a bolus of ligand

released. Then, we simulate the combined dynamics of bound and soluble fractions for sufficiently long until the ligand distribution

cðx; tÞ is relatively stable. In practice, we observe that czcb after a sufficiently long period of time, since the soluble fraction quickly

become insignificant due to fluid flow. The resulting concentration field represents an interstitial gradient. The average concentration

is set by setting the release rate k such that the concentration of the soluble fraction cs matches measured chemokine concentration

found in interstitial fluids (1pM-10 pM) (Clark et al., 2015; Wang et al., 2008).

Togenerate a distributionof ECMbinding sites eðxÞ (Equation 55),weuse aminimal computationmodel of fiber network (Harjanto and

Zaman, 2013; Lee et al., 2014; Schl€uter et al., 2012). Themodel generates ECMfibers represented by line segments, which could repre-

sentfibronectin, collagen, laminin,orother fibrousmatrixcomponents. Topositioneachfiber, oneendofeachsegment is randomlyposi-

tioned following a uniform distribution within the domain. The other end’s position is determined by picking an angle, uniformly from

½0;2pÞ, and lengthsampled fromanormaldistributionwithmean75mmandstandarddeviationof5mm(asmeasured for collagenbyFriedl

et al., 1997). In total, 4050 fiberswereplaced in the domain. For the PDE simulation, the generated network is discretized by counting the

number of fibrous proteins around each node in the simulation lattice. The density of fiber within each node is then converted to a con-

centration value representing the level of ECM binding sites, resulting in an average concentration of ECM binding site of 520nM.

Simple chemical gradient

One of the simplest model of chemical gradient can be described by the following PDE,

vcðx; tÞ
vt

= adðx0Þ+DDc � gc; (Equation 56)

where ligands are produced at rate a from a localized source at x0, diffuses with diffusivity D and undergoes first order degradation

with rate g. The steady-state solution of Equation 56 is a single exponential gradient,

cðxÞ = C0expð� x = lÞ; (Equation 57)

where the ligand concentration cðxÞ only depends on distance x from the source, the concentration at the source boundary C0 = a=

ð2
ffiffiffiffiffiffiffiffiffi
D=g

p
Þ and the decay length l =

ffiffiffiffiffiffiffiffiffi
D=g

p
. By taking the source location x0 tobe the entire left boundary of the spatial domain, the stim-

ulated interstitialgradient iswell-describedby theexponentialmodel.Specifically,byfirstaveraging the interstitialgradient (along theaxis

parallel to the ligand source) and fitting the resulting 1-D profile to Equation 57 usingMatlab’s fit function, we obtain an excellent fit with

correlation coefficient R2
= 0:98. This fitted exponential profile is the simple, monotonic gradient used in the paper.

Dynamic protocol for receptor rearrangement

In a dynamically changing environment, receptor should redistribute in an efficient manner in order to maximize information acqui-

sition.We extended our optimization problem of Equation 18 to incorporate a ’’cost’’ for changing receptor location. For a cell sensing

a sequence of ligand profiles fctgTt = 1 over time, the optimal receptor placement r�t for ct now depends additionally on r�t� 1, the re-

ceptor placement for the previous ligand profile,

r�t = argmax
rR0P

i
ri = N

Iðbct; bajrÞ � gW1

�
r�t� 1; r

�
: (Equation 58)

Here, we model the cost for redistributing receptors using the Wasserstein-1 (W1) distance. For completeness, we first introduce

the formal definition of the W1 distance before returning to a much simpler form that applies to our problem. Let X � P and Y � Q

represent two random variables defined overM3R
d. Further, let J ðP;QÞ denote all joint distributions J for ðX;YÞ that have marginal

P and Q. The W1 distance between P and Q is:
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W1ðP;QÞ = inf
J˛J ðP;QÞ

Z

M3M

jjx � yjj1dJðx; yÞ: (Equation 59)

One way to understand the above definition is to consider different ways of transporting a distribution of mass PðxÞ to a different

distributionQðxÞ. Given some cost function associated with each unit of mass transported, theW1 distance is the minimum transport

cost achievable. In this way, theW1 distance assumes that the transformation from P toQ occurs in an optimal manner. Note that this

distance function is non-negative and symmetric, and does not requireP andQ to be probability distributions, it applies whenever the

total mass is preserved between P and Q.

Although Equation 59 is difficult to compute in general, it has a closed form for the special case of d = 1 which is the case we are

considering. Instead of using the canonical form of the W1 distance in 1-D, we need to use a generalized form that applies to distri-

butions on a circle (Rabin et al., 2011). For two receptor distributions on the 1-D surface of a 2-D cell, represented as non-negative

vectors a and b of length m, the W1 distance takes on the form,

W1ða;bÞ =

Xm

i = 1

					4i � m

					; (Equation 60)

where 4i =
Pi

j = 1

�
aj

jjajj1 �
bj

jjbjj1

�
and m is the median of the set of values f4i;1 % i %mg. We derive the gradient of equation 60 as:

v

vak
W1ða;bÞ =

Xm

i = 1

sgnð4i � mÞ
Xi

j = 1

�
djk � aj

kak1

�
: (Equation 61)

We perform optimization with this gradient using the fmincon function (with sqp algorithm) in Matlab.

Numerical simulation of receptor feedback scheme

In our feedback scheme, receptor rðx; tÞ is modeled by considering three redistribution mechanisms: (1) lateral diffusion of r along the

plasmamembrane (DV2
membr), (2) endocytosis of r along the plasmamembrane (koff r), (3) incorporation of cytoplasmic pool of recep-

tors, Rcyto, to the membrane at rate proportional to local receptor activity (hARcyto). Aðx; tÞ is a random variable that denotes receptor

activity along the cell membrane, and is a function of local receptor number. Then, the equation describing the distribution of r across

the cell membrane can be expressed mathematically as,

vrðx; tÞ
vt

= DV2
membr � koff r + hARcyto; (Equation 62)

where the total number of receptors rtot =
R
membr +Rcyto is fixed. We simulate receptor distribution by treating the cell membrane as a

1D space and the cytosol as a single, homogeneous compartment. This simplification allows us to simulate our PDE using the Crank-

Nicolson method in one spatial dimension. Given space and time units Dx and Dt, respectively, the Crank-Nicolson method with

R
j
i : = rðiDx; jDtÞ and A

j
i : = AðiDx; jDtÞ is given by the difference scheme

Rj + 1
i � Rj

i

Dt
=

D

2Dx2
�
Rj

i +1 � 2Rj
i + Rj

i� 1 + Rj + 1
i + 1 � 2Rj + 1

i + Rj + 1
i� 1

�
� koff

2

�
Rj

i + Rj + 1
i

�
+

hAj
i

2

�
Rj

cyto + Rj + 1
cyto

�
(Equation 63)

where, i = 1;2;3;.m; representingm discrete membrane compartments and R
j
cyto represents the additional cytosol compartment.

Since the membrane is represented by a circle, we have the following pair of conditions,

Rj
0 = Rj

m; R
j
m+ 1 = Rj

1: (Equation 64)

Lastly, total receptor number across all compartments is conserved:

Xm

i = 1

Rj
i + Rj

cyto =

Xm

i = 1

Rj + 1
i +Rj + 1

cyto: (Equation 65)

Now, we can combined Equations 63, 64, and 65 and rewrite everything in vector form. First, let

a : =

D

2Dx2
; b : =

koff

2
; kji : =

hAj
i

2
;

and rewrite Equation 63 as,

Rj + 1
i

Dt
� a

�
Rj + 1

i + 1 � 2Rj +1
i + Rj + 1

i� 1

�
+ bRj + 1

i � k
j + 1
i Rj + 1

cyto =
Rj

i

Dt
+a
�
Rj

i + 1 � 2Rj
i + Rj

i� 1

�
� bRj

i + k
j
iR

j
cyto (Equation 66)

and defineUj to be the ðm + 1Þ-dimensional vector with components Rj
i for i = 1;2;3;.m and U

j
m+1 = R

j
cyto. The difference scheme

is given in the vector form

PUj + 1
= QUj: (Equation 67)
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where,

P =

2

6666666666666666666664

1

Dt
+ 2a+ b �a 0 / 0 �a � k

j + 1
1

�a
1

Dt
+ 2a+ b �a 0 / 0 � k

j + 1
2

0 1 1 1 «

« 1 1 1

0 / 0 �a
1

Dt
+ 2a+ b �a � k

j + 1
m� 1

�a 0 / 0 �a
1

Dt
+ 2a+ b � kj + 1m

1 1 / 1 1

3

7777777777777777777775

(Equation 68)

Q =

2

6666666666666666666664

1

Dt
� 2a � b a 0 / 0 a k

j
1

�a
1

Dt
� 2a � b a 0 / 0 k

j
2

0 1 1 1 «

« 1 1 1

0 / 0 a
1

Dt
� 2a � b a k

j
m� 1

a 0 / 0 a
1

Dt
� 2a � b kjm

1 1 / 1 1

3

7777777777777777777775

(Equation 69)

Because A is invertible, the Crank-Nicolson scheme reduces to the iterative process

Uj + 1
= P� 1QUj: (Equation 70)

The entire evolution of r can be solved where at each time step, we update receptor activity Aj
i across all membrane position i ac-

cording to the random process described by Equations 16 and 17, followed by solving Equation 70 for Uj + 1.

We set the value of the feedback constant h using empirical measurements from Marco et al. (2007). In Figure 3M of Marco et al.,

the authors report a quartile box plot showing estimated values for a parameter they call h (which we will refer to as h), with a mean

estimate of around 1:63 10� 3s� 1. Note h is equivalent in meaning as our hAi. However, since hAi will be different across different

membrane bins and across time, we simulate the feedback scheme for a cell in a given environment and set the value of h such that

the mean rate ChAiD (averaged across membrane and time) is approximately equal to the mean estimate of 1:6310� 3s� 1 reported by

Marco et al. The value h reported by Marco et al., corresponds specifically to the transport rate of the Cdc42 to the membrane. The

parameter value was obtained by analyzing fluorescence recovery of GFP-Cdc42 in membrane regions bleached with a laser pulse.

Although the measured value corresponds to Cdc42, it has been used to model the effective exocytosis rate for receptors shown to

undergo activity-dependent localization, showing good agreement with empirical data (Hegemann et al., 2015). Similar values around

10� 3s� 1- 2310� 3s� 1 have been measured for the recycling rate of a wide range of GPCRs (Lauffenburger and Linderman, 1993;

Koenig and Edwardson, 1994, 1996; Pippig et al., 1995).

Simulation of cell navigation

Chemotaxis algorithm

At t = 0, initialize a cell at position p0 ˛U3R
2.

At each subsequent time step t = t +Dt with the cell at position pt ˛U:

1. Compute mean ligand profile c˛R
m at the cell’s current position.

2. Independently sample n ligand profiles fCðiÞgni = 1 where each elementCj is distributed as a Poisson random variable with mean

equal to cj (n = 30 used in main text, refer to Figure S10 for other values of n).

3. For each ligand profile CðiÞ sampled, sample a corresponding receptor activity profiles AðiÞ,

AðiÞ		CðiÞ �
Ym

j = 1

PoisðljÞ; where lj = rj

 
C

ðiÞ
j

C
ðiÞ
j +Kd

+ a
Kd

C
ðiÞ
j +Kd

!

: (Equation 71)
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4. Compute average receptor activity A =
1
n

Pn
i = 1A

ðiÞ

5. Compute an estimator of gradient direction bq using one of three approaches

d Optimal decoder + noise (Hu et al., 2010): bq = arctan
�

sinð4ÞTA
cosð4ÞTA

�
+Nð0;0:1Þ, where 4i = 2pi=m, i = 1;.;m corresponds to

the angle where Ai is measured on the cell surface.
d Random: bq is sampled uniformly from the set of m angles/directions f4igmi = 1

d Maximal increase: bq = 4i� where

i� = argmax
1% i%m

fðiÞ and fðiÞ =
�
Ai � Ai +m=2 i%m=2

Ai � Ai�m=2 i >m=2

This decoder selects the direction of maximum change in receptor activity across the cell surface. In addition to the three decoders

above, we consider the possibility of temporal averaging, where A is a running mean over the past 5 minutes of receptor activity

profiles (a total of 300330 = 9000 sample profiles). This running average is decoded with the optimal decoder + noise as described

above.

6. Set new cell position pt +Dt = pt + sDt½cosðbqÞ;sinðbqÞ�, with speed s = 2mmmin� 1, Dt = 1s.

7. Repeat from step 1.

Tissue gradient simulation for localization task

In addition to using the same tissue environment as the rest of the paper, we simulated additional tissue gradients using the same set

of parameters but different (randomly generated) ECM fiber networks. This results in tissue gradients that have the same macro-

scopic features but different patterns of microscopic fluctuations.

Tissue gradient simulation for retention task

This task was motivated by the precision with which growth cones can retain themselves within specific regions of gradients of axon

guidance cues. For this task, we used an ellipse-shaped cell with semi-major axis = 5mm, semi-minor axis = 2mm to mimic the shape

of a navigating growth cone. In-vivo observations of axon guidance cue gradients show very short decay length (Xiao andBaier, 2007;

Xiao et al., 2011), so we adjust several parameters to generate interstitial gradients with matching decay length. Table S3 contains

new parameter values that differ from Table S1.

Extensions of framework to other strategies

We briefly illustrate an extension of our framework to study how cell shape can be tuned to improve cell sensing and navigation.

Recall the generalized model of receptor activation from the discussion,

E½Aijci� = fðqiÞ
�

ci

ci +Kd

+ a
Kd

ci +Kd

�
; (Equation 72)

where f is an unspecified function of an arbitrary set of variables q, representing the ’’effective’’ number of receptors at position i.

Recent work has shown that given uniform membrane receptors sensing a uniform ligand field, membrane regions of higher cur-

vature can exhibit higher receptor activity, due to higher local volume-to-surface ratio (Rangamani et al., 2013). Supposewe are inter-

ested in tuning membrane shape/curvature as a way to maximize information acquisition by cells. Assuming a constant, linear rela-

tionship between curvature at the i-th membrane position bi and ’’effective’’ receptor number f, and that receptors are uniformly

distributed, then we have

E½Aijci� = a
rtot

m
bi

�
ci

ci +Kd

+a
Kd

ci +Kd

�
; (Equation 73)

where a is a proportionality constant andm is the number of membrane bins. This model is identical to our receptor model of Equa-

tion 28 up to a constant factor. Furthermore, if we assume a fixed total membrane area, the resulting optimization problem is nearly

identical with Equation 18, where total membrane area now play a similar role as total receptor number, and bi takes the place of ri.

Therefore, we expect general features of the optimal cell shape to match that of the optimal receptor placement. Namely, cells can

maximize information acquisition by increasing membrane curvature at regions of high ligand concentration, by making narrow pro-

trusions. One can derive amore accurate solution by considering a detailedmodel of the relationship between curvature and receptor

activity outlined in Rangamani et al. (2013).

By extension, a strategy to dynamically form narrowmembrane protrusions at regions of high ligand concentration, without explic-

itly tuning receptor positions, should in principle boost navigation efficiency in a manner similar to the receptor feedback scheme we

proposed, as the two strategies have qualitatively similar effects on the spatial distribution of receptor activity. Recent works show

that indeed a feedback circuit that produces dynamic, narrow membrane protrusions is crucial for neutrophil navigation. Cells that

cannot form narrow protrusions can still move, but exhibit profoundly defective chemotaxis (Diz-Muñoz et al., 2016).
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