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Predicting function of evolutionarily implausible DNA sequences
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Abstract

Genomic language models (gLMs) show potential
for generating novel, functional DNA sequences
for synthetic biology, but doing so requires them
to learn not just evolutionary plausibility, but also
sequence-to-function relationships. We introduce
a set of prediction tasks called NULLSETTES,
which assesses a model’s ability to predict loss-of-
function mutations created by translocating key
control elements in synthetic expression cassettes.
Across 12 state-of-the-art models, we find that
mutation effect prediction performance strongly
correlates with the predicted likelihood of the non-
mutant. Furthermore, the range of likelihood val-
ues predictive of strong model performance is
highly dependent on sequence length. Our work
highlights the importance of considering both se-
quence likelihood and sequence length when us-
ing gL.Ms for mutation effect prediction.

1. Introduction

Genomic language models (gLMs) learn a probability distri-
bution over DNA sequences, representing the evolutionary
plausibility of genomic sequences (Benegas et al., 2025b;
Consens et al., 2025). For example, glL.Ms would assign
higher likelihood values for regulatory motifs that occur fre-
quently in natural genomic sequences compared to random
sequences.

Evolutionary plausibility can be a useful proxy for biologi-
cal function. In both genomic and protein language models
(gLMs and pLMs), higher model likelihoods often correlate
with improved functional properties. For example, pLM
likelihoods can guide the design of higher affinity antibod-
ies (Hie et al., 2024), more efficient base editors (He et al.,
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2024), and brighter fluorescent proteins (Zhang et al., 2025).
Similarly, gL.M likelihoods enable genome-wide prediction
of variant effects (Benegas et al., 2023) and 5’ untranslated
region (UTR) optimization (Chu et al., 2024).

However, current evaluations for gL.Ms on mutant effect
prediction focus primarily on natural sequences. In contrast,
synthetic biology often requires the design of functional
sequences with little or no evolutionary precedent, such
as sequences that confer novel functions, avoid crosstalk
with native machinery, or push expression levels beyond
natural limits. Examples include ultra-strong synthetic pro-
moters (Schlabach et al., 2010), miRNA-based regulatory
circuits that achieve dosage-compensated gene expression
using elements orthogonal to native miRNAs (Du et al.,
2024), and engineered metabolic pathways for production
of small molecule drugs (Yan et al., 2023). For these ap-
plications, it is unclear whether glLMs trained on natural
genomes can generalize to synthetic constructs, especially
in the absence of deep mutational scanning data for DNA.
If successful, gL.Ms could support more systematic and
scalable approaches to genetic design.

We introduce a benchmark suite, NULLSETTES, to evalu-
ate gl.Ms on their ability to predict loss-of-function (LOF)
mutations in synthetic expression cassettes. NULLSETTES
leverages well-established mechanisms of gene expression
to systematically introduce virtual LOF mutations by rear-
ranging key control elements, such as promoters and start
codons, within functional cassettes. Using functional cas-
settes (referred to as nonmutant) curated from Massive Par-
allel Reporter Assay (MPRA) data (Lagator et al., 2022;
de Boer et al., 2020; Kosuri et al., 2013; Zahm et al., 2024),
including those with randomly generated, low-likelihood
promoters, we show that Evo-2-7B outperforms 11 other
state-of-the-art models in mutant effect prediction. However,
all gL.Ms exhibit a sharp decline in predictive accuracy as the
likelihood of the nonmutant sequence decreases. Moreover,
the likelihood range at which each model performs opti-
mally varies strongly with sequence length. These results
suggest that both likelihood and length must be considered
when applying gl.Ms to guide genetic design.
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Figure 1. Overview of NULLSETTES. A) Schematic examples showing transcription (i) and translation (ii) becoming impaired when the
order of control element such as terminator (iii) or stop codon (iv) are altered. B) NULLSETTES generates 11 and 19 mutant variants for
each eukaryotic and prokaryotic expression cassette, respectively, by translocating control elements, and evaluates how well gL.Ms can
predict these loss-of-function mutations based on changes in log-likelihood.

2. Methods
2.1. NULLSETTES Construction

To systematically evaluate gl. Ms’ ability for zero-shot func-
tional prediction on expression cassettes, we proposed
NULLSETTES, a suite of virtual mutants that perturb tran-
scription and translation of an expression cassette by shuf-
fling the order of six key control elements. These elements
are promoter, ribosome binding site (RBS), start codon,
coding sequence (CDS), stop codon, and terminator.

In the canonical configuration of an expression cassette
(Figure 1A i-ii), the proper ordering of promoter—start
codon—CDS—stop codon—terminator from 5’ to 3’ end en-
ables proper transcription (i) and translation (ii). However,
translocations that reposition critical elements, such as plac-
ing the terminator between the promoter and the CDS (iii)
or the CDS downstream of the stop codon (iv), result in
transcriptional or translational failure, respectively.

NULLSETTES consists of single-element translocations that
effectively eliminates any production of functional mRNA
and protein (Figure 1B). Among the set of all possible
single-element translocations, we subset for mutants where
1) the CDS expression cannot be rescued by any flanking
sequences outside the cassette, 2) expression machinery can
still act to generate useless products. These virtual mutant
cassettes collectively make up the NULLSETTES, which
consists of 11 mutations for eukaryotic and 19 mutations
for prokaryotic cassettes (see Appendix Table 3 and 4 for
full list). The 8 additional mutants for prokaryote cassettes
are due to translocating the RBS. Given a functional cas-
sette, we then compare its gl.LM log-likelihood (LL) with
its corresponding NULLSETTES to assess how well a gL M

can perform zero-shot functional prediction by consistently
predicting lower likelihoods for the NULLSETTES.

2.2. Functional cassette curation

To assess mutant effect prediction using NULLSETTES, we
curate expression cassettes from public MPRA datasets (La-
gator et al., 2022; de Boer et al., 2020; Kosuri et al., 2013;
Zahm et al., 2024). We specifically use cassettes with strong
gene expression but low gl.M likelihood representing low
evolutionary plausibility. These cassettes have low likeli-
hood due to containing elements from evolutionarily distant
organisms. For example, the CDS, green fluorscent protein
(GFP), is from the jellyfish Aequorea victoria, whereas pro-
moter and terminators are sourced from bacteria, human and
mice. Furthermore, cassettes curated from Lagator dataset
and deBoer pTpA dataset use random DNA sequences as
promoters, which further lowers gL.M likelihood compared
to those with natural promoters/motifs (See Appendix A.3).
In the paper, we name datasets with random promoters with
the suffix (“Low”) and those with more natural promoters
with the suffix (“High”) (Figure 2).

2.3. Baseline Models

We benchmarked a diverse set of 12 self-supervised genomic
foundation models that represent current state-of-the-art ap-
proaches to DNA language modeling. In general, the mod-
els can be categorized based on their tokenization schemes
(fixed-length k-mers, single-nucleotide tokens, byte-pair en-
coding, and hybrid schemes), pretraining strategies (masked
language modeling (Devlin et al., 2019) vs. autoregressive
modeling (Brown et al., 2020)), training corpus diversity
(human references, plant genomes, multispecies genomes,
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Figure 2. Relationship between gLLM likelihood and zero-shot performance on NULLSETTES prediction. A) Each point represents an
expression cassette. Scatterplots show the NULLSETTES prediction performance of Evo-2-7B and Nucleotide Tranformer-2.5B-MS for
sequences from five datasets. B) Heatmap showing correlation between the gLM log likelihood (LL) of a sequence and gLLM success rate
on NULLSETTES prediction, across five datasets and 12 models. C) Stacked bar plot showing success rate of models computed using all
sequences in each dataset, representing the proportion of NULLSETTES mutants that a model consistently outputs a lower LL compared to

the nonmutant.

and large-scale metagenomic assemblies), and architectural
paradigms (CNN-based models, transformer-based mod-
els (Consens et al., 2025), and emerging architectures like
StripedHyena (Poli et al., 2023; Ku et al., 2025) and Mamba
(Gu & Dao, 2023)). Detailed model specifications are con-
cluded in Appendix Table 1 and 2.

2.4. Evaluation Metrics

We computed the mean base-pair log-likelihood (LL) as the
sequence-level LL score. To account for the distinct pre-
training objectives of causal language models (CLMs) and
masked language models (MLMs), we applied different LL
computation strategies, as detailed in Appendix B.1. After
obtaining the LL distributions for both the original cassette
and its virtual mutants (NULLSETTES), we performed a one-
sided paired permutation test to assess whether the mutant
cassettes exhibit a significant decrease in LL compared to
the original sequence (Figure 1B). Additional methodologi-

cal details are provided in Appendix B.2.

3. Results

We benchmarked these glLMs and their variants across five
datasets, as shown in Appendix C. Representative models
were selected for further analysis in the following sections.

3.1. Zero-shot NULLSETTES prediction performance
deteriorates for sequences with low gLLM likelihood

The evolutionary plausibility of a sequence, as predicted by
a gL.M, strongly correlates with the gL.M’s performance in
predicting mutation effects for the sequence. Figure 2A com-
pares gL.M prediction performance of individual functional
cassettes and their predicted LL for two models, Evo-2-7B
and NucleotideTransformer-2.5B-MS. Here success rate for
each cassette is defined as the proportion of NULLSETTES
(11 in eukaryote, 19 in prokaryote) whose LL score is lower
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than the original, nonmutant cassette. For both models, we
observe strong correlations between the nonmutant LL score
and the gL.M’s ability to identify LOF mutants. For example,
for the E.coli (Low) dataset (Lagator et al., 2022), zero-shot
NULLSETTES prediction with NT-2.5B-MS is nearly im-
possible when the nonmutant LL is below -25, and easily
accomplished for nonmutants with LL above -22. In fact,
Figure 2B shows that all models, despite variations in archi-
tecture and training, exhibits a positive correlation between
sequence likelihood and mutant prediction performance.

The Evo-2-7B model achieves the best overall performance
in zero-shot NULLSETTES prediction. Evaluating zero-shot
prediction using all sequences within a dataset (See Meth-
ods), Figure 2C shows that Evo-2-7B achieves the best over-
all performance across all five datasets. Specifically for the
E.coli and yeast MPRA data using random promoters (left),
which are less evolutionarily plausible than more natural
sequences shown on the right (Appendix Figure 4).

3.2. Optimal likelihood range predictive of strong model
performance varies with sequence length

Although mutant prediction performance correlates with se-
quence likelihood, the range of LL scores for which a model
performs well depends highly on the length of the DNA
sequence. The range of LL scores for which models achieve
strong performance is higher for longer sequences, partly
due to the fact that gl.Ms tend to assign higher LL scores
to longer cassettes (Figure 3A). For example, Figure 3B
shows that the NT-2.5B-MS model achieves strong perfor-
mance for cassettes with log likelihood above —22 for both
E. coli datasets, as indicated by the gray dotted line. How-
ever, for sequences from the Human GPRA dataset which
are 2.5-folds longer, only LL score above —17 achieved
strong performance. Similarly sequences from the yeast
(low) dataset are 30% longer compared to sequences from
the E. coli datasets. Thus, for GPN-promoter and Evo-1.5,
the optimal likelihood range is also significant higher for
the yeast (low) dataset.

Altogether, there does not appear to be a single optimal
likelihood range within which a model would be able to
make zero-shot mutation effect predictions, as sequence
properties such as length can have a significant effect on
optimal likelihood range.

4. Discussion

In this study, we introduce NULLSETTES, the first system-
atic benchmark for assessing the ability of genomic lan-
guage models (gLMs) to predict loss-of-function mutations
in synthetic expression cassettes. By enabling simple in sil-
ico translocation of sequences, NULLSETTES facilitates gen-
eralizable, cassette-independent evaluations of gL M func-
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Figure 3. Optimal likelihood range for NULLSETTES predic-
tion varies with sequence length. A) Length in base pairs and
normalized gL.M log likelihood of all nonmutant cassettes, aver-
aged across all 12 models. B) Contour of scatter plots similar to
those in Figure 2A, colored by dataset, dotted vertical lines are
rough estimates of optimal LL value for sequences from different
datasets. Human data for Evo 1.5 is cut off for better visual due to
large LL score.

tional performance. Beyond general performance bench-
marking, our results reveal a strong correlation between
gl.M performance on mutation prediction tasks and the
model’s predicted likelihood of the original, non-mutant
sequence. Moreover, we demonstrate that the optimal likeli-
hood range for accurate mutant discrimination is not fixed
but varies significantly with sequence length. Together, we
hope this benchmark and its findings will inspire the devel-
opment of gl.Ms that move beyond evolutionary priors to
support the rational design of functional, out-of-distribution
genetic sequences.
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Software and Data

The source code for benchmarking gL.LM on NULLSETTES
is publicly available at: https://github.com/
cellethology/GLM-Nullsette—-Benchmark.
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A. Datasets
A.1. Prokaryote

To evaluate the regulatory grammar of prokaryotes on genomic language models, we utilized two benchmark datasets
derived from synthetic expression constructs in Escherichia coli. The first, the Kosuri dataset (Kosuri et al., 2013), comprises
combinatorial assemblies of promoters and ribosome binding sites (RBS) upstream of a superfolder GFP (sfGFP) reporter,
designed to dissect transcriptional and translational contributions to gene expression. The second, the Lagator dataset
(Lagator et al., 2022), features a large-scale library of random promoter sequences with experimentally measured activity,
enabling evaluation of models’ ability to generalize to highly diverse, out-of-distribution regulatory inputs.

A.2. Eukaryote

To evaluate the capacity of genomic language models to generalize to eukaryotic regulatory logic, we utilized two large-
scale massively parallel reporter assay (MPRA) datasets. The Zahm dataset (Zahm et al., 2024) comprises a library
of 6,144 synthetic promoters constructed by combining transcriptional response elements (TREs) from 229 human and
mouse transcription factors with minimal promoters. These constructs were assayed across multiple human cell lines and
stimulatory conditions to quantify dynamic, stimulus-specific gene expression. The deBoer dataset (de Boer et al., 2020)
includes a comprehensive collection of 100 million randomized promoter sequences in yeast, enabling high-resolution
dissection of cis-regulatory grammar under out-of-distribution scenario.

A.3. Promoter selection

To construct decoupled expression cassettes, we selected 1,500 promoters or promoter—RBS pairs from four distinct datasets.

A.3.1. KOSURI AND LAGATOR DATASETS

For the Kosuri dataset (Kosuri et al., 2013), we selected candidate promoter—RBS pairs with protein expression levels
exceeding v + 1.50 (10,165) across the full distribution. In contrast, given the limited number of highly active constructs in
the Lagator dataset, we directly selected the top 1,500 promoter sequences ranked by protein output. We then compared the
log-likelihood (LL) distributions of promoter—RBS groups using genomic language models including Evol 8k, GENERator
3B, GPN, and Nucleotide Transformer 2.5B multispecies. As the Lagator dataset (Lagator et al., 2022) consists of randomly
generated promoters, whereas the Kosuri library is more rationally designed, we prioritized Kosuri promoter—RBS pairs
whose LL distributions surpassed those from Lagator (Appendix Figure 4a), yielding 1,500 expression cassettes from each
dataset.

A.3.2. DEBOER DATASET

deBoer dataset (de Boer et al., 2020) contains two promoter libraries: Abf1TATA and pTpA. Abf1TATA is designed by
embedding conserved transcription factor binding sites such as Abfl and a canonical TATA box, mimicking features of
natural yeast promoters; while pTpA consists of synthetic promoters constructed with a simple poly-T—poly-A architecture,
lacking specific transcription factor motifs and serving as a minimal, randomized control library. Similar to Kosuri vs
Lagator, we selectively constructed 1,500 active promoters for each dataset based on LL distribution where pTpA is
left-shifted comparing to Abf1TATA as Abf1TATA is more conservative (Appendix Figure 4b). The source can be found at
NCBI's GEO: GSE104878'.

A.3.3. ZAHM DATASET

The Zahm dataset (Zahm et al., 2024) comprises synthetic promoters built by coupling one of three minimal promot-
ers—minCMYV, minProm, or minTK—with diverse transcriptional response element (TRE) units. To construct a representa-
tive set of mammalian expression cassettes, we selected the top 1,500 promoter-TRE combinations exhibiting the highest
transcriptional activity. The source can be found at NCBI’'s GEO: GSE2716082.

"https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104878
“https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE271608
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Figure 4. Comparison of promoter log-likelihood distribution

A.4. Virtual mutant

Translocation mutants were systematically engineered by permuting the canonical order of key regulatory and coding
elements—promoter, ribosome binding site (RBS), start codon, coding sequence (CDS), stop codon, and terminator in
prokaryotic systems; and promoter, start codon, CDS, stop codon, and terminator in eukaryotic systems. Each permutation
aims to disrupt the natural transcription-translation flow, creating syntactically or functionally invalid constructs. A total of
19 translocation variants were designed for prokaryotic systems and 11 for eukaryotic systems. All constructs were rendered
completely non-functional by design. All translocation combinations can be found in Appendix Table 3 for prokaryote and
Appendix Table 4 for eukaryote.

B. Evaluation Metrics
B.1. Mean Log-likelihood

For casual language models (CLM), the log-likelihood of a nucleic acid sequence X = (z1, 2, ..., T,,) is computed using
logits output from the model. Since CLM operates in an autogressive manner, each token x; is predicted based on all
previous token x < ¢. Given the model’s logits, at each position ¢, the probability of the ground-truth token is obtained via
softmax:

exp(logits, . )
P = — 1
(2 | 2<e) > ey exp(logitsw) W
where V represents the vocabulary. The mean log-likelihood is then computed as:
1 n
LLCLM(X) = m Zlog P(Z’t | l’<t) (2)

t=2

Masked language models (MLMs) differ from autoregressive models in their inference behavior, as they are not inherently
designed for sequential generation. To address this, Wang & Cho (2019) introduced the pseudo log-likelihood (PLL)
approach, wherein each token in a sequence is masked individually to compute token-wise conditional probabilities. More
recently, Gordon et al. (2024) proposed Single-Inference Pseudo Log-Likelihood, an efficient approximation that enables
linear-time inference for BERT-style MLLMs by exploiting training-time masking dynamics.

Rather than computing pseudo log-likelihood (PLL), we assessed relative changes in mean token-wise log-probabilities
derived from unmasked logits for all MLM-based gl.Ms. This method, though lacking strict probabilistic interpretation,
provides a scalable and effective proxy for quantifying model sensitivity to syntactic or functional disruptions. The formula
is as follows:
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Given the logits, at each position ¢, the probability of the correct token is computed as:

exp(logitst_"qct )

P X)= 3
(‘rt ‘ ) Z’UGV eXp(lOgitstm) ( )
Then the log-likelihood for the entire sequence is computed over all positions:
1 n
LLyin (X) = — > log P(x: | X) (4)

t=1

where all positions contribute to the likelihood computation since no masking is performed during inference.

B.2. One-sided Paired Permutation Test

To assess significance between paired conditions (e.g., original vs. mutant), we performed as one-sided paired permutation
test. Given differences d; = ;""" — g;°7*9"%! for each pair i, we computed the observed mean d,ps. Under the null
hypothesis of no effect, signs of d; are exchangeable. We generated N = 10,000 random permutations by sampling
s; € {—1,1} and computing d¥) = % >, sid;. The one-sided p-value was calculated as:
1
- - 10) < 4

p= N_Zlﬂ(d < don ) 5)

=

for the alternative hypothesis that the mutant is smaller than the original.

C. Model Performance Evaluation

We systematically evaluated the impact of tokenization strategies and model sizes on the performance of gLMs. As shown
in Appendix Figure 5, we benchmarked the PDLLM model series (Liu et al., 2025a), which differ only in their tokenization
choices. Our analysis revealed that the choice of tokenization profoundly influences model success rates: byte pair encoding
(BPE) shows a stable performance across models. In contrast, single-token schemes performed poorly, while the 6-mer
representation exhibited intermediate performance, with model-specific variability. To assess the effect of model size, we
compared models that vary only in parameter size. Notably, we found no consistent relationship between model size and
task performance: in several cases, smaller models performed on par with, or even outperformed, their larger counterparts.

o

© 0.7 o © 0.8 o °
g o 8 dnagemma & ° Evo2
£0.6 dnagpt § 0.6 o o GENERator
3! @) dnamammba 8 NT
3 0.5 NT 3 0.4 o GENA-LM
@ ©] dnabert & () gLM2
o 8 o o
> 0.4 =
o 0.2 o
BPE Single 6-mer Small Large

Figure 5. Comparative evaluation of gL.Ms across tokenization methods (left) and model sizes (right).

Furthermore, while representative models were selected for the main analysis, we conducted an extensive evaluation of
various model versions across all datasets. As shown in Appendix Figure 6, the Evo series models (Nguyen et al., 2024;
Merchant et al., 2024; Brixi et al., 2025) consistently outperformed all others in the NULLSETTES tasks, with nearly every
Evo variant ranking at the top. This advantage likely reflects the superior architectural design and scaling strategy employed
by the Evo models. Among non-Evo models, METAGENE-1 (Liu et al., 2025b) achieved the highest performance, likely
due to its training on over 1.5 trillion base pairs of DNA and RNA sequences derived from wastewater metagenomes. The
unique breadth and diversity of metagenomic data may provide this model with an enhanced ability to generalize across
sequence contexts. The Nucleotide Transformer (NT) (Dalla-Torre et al., 2024) series followed, ranking third overall. These
findings highlight the impact of both model architecture and training data diversity on generalization performance across
regulatory sequence prediction tasks.
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Figure 6. The number of cumulative successful predictions made by each model series across four datasets: Abf1TATA and pTpA (from
deBoer), Zahm, Kosuri, and Lagator.
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Mutant ID

Description

Translocation-1

CDS - Promoter - RBS - Start codon - Stop codon - Terminator

Translocation-2

Promoter - CDS - RBS - Start codon - Stop codon - Terminator

Translocation-3

Promoter - RBS - CDS - Start codon - Stop codon - Terminator

Translocation-4

Promoter - RBS - CDS - Stop codon - Start codon - Terminator

Translocation-5

Promoter - RBS - CDS - Stop codon - Terminator - Start codon

Translocation-6

Promoter - RBS - Start codon - Stop codon - CDS - Terminator

Translocation-7

Promoter - RBS - Start codon - Stop codon - Terminator - CDS

Translocation-8

Promoter - RBS - Start codon - Terminator - CDS - Stop codon

Translocation-9

Promoter - RBS - Terminator - Start codon - CDS - Stop codon

Translocation-10

Promoter - Start codon - CDS - RBS - Stop codon - Terminator

Translocation-11

Promoter - Start codon - CDS - Stop codon - RBS - Terminator

Translocation-12

Promoter - Start codon - CDS - Stop codon - Terminator - RBS

Translocation-13

Promoter - Start codon - RBS - CDS - Stop codon - Terminator

Translocation-14

Promoter - Terminator - RBS - Start codon - CDS - Stop codon

Translocation-15

RBS - Promoter - Start codon - CDS - Stop codon - Terminator

Translocation-16

RBS - Start codon - CDS - Promoter - Stop codon - Terminator

Translocation-17

RBS - Start codon - CDS - Stop codon - Promoter - Terminator

Translocation-18

RBS - Start codon - Promoter - CDS - Stop codon - Terminator

Translocation-19

Start codon - Promoter - RBS - CDS - Stop codon - Terminator

Table 3. Prokaryotic virtual mutant cases. Translocation-3,4,5 cannot be compensated by a later start codon as there are no other
in-frame start codon.

Mutant ID

Description

Translocation-1

CDS - Promoter - Start codon - Stop codon - Terminator

Translocation-2

Promoter - CDS - Start codon - Stop codon - Terminator

Translocation-3

Promoter - CDS - Stop codon - Start codon - Terminator

Translocation-4

Promoter - CDS - Stop codon - Terminator - Start codon

Translocation-5

Promoter - Start codon - Stop codon - CDS - Terminator

Translocation-6

Promoter - Start codon - Stop codon - Terminator - CDS

Translocation-7

Promoter - Start codon - Terminator - CDS - Stop codon

Translocation-8

Promoter - Terminator - Start codon - CDS - Stop codon

Translocation-9

Start codon - CDS - Promoter - Stop codon - Terminator

Translocation-10

Start codon - CDS - Stop codon - Promoter - Terminator

Translocation-11

Start codon - Promoter - CDS - Stop codon - Terminator

Table 4. Eukaryotic virtual mutant cases. Translocation-2,3,4 cannot be compensated by a later start codon as there are no other
in-frame start codon.
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