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Identifying perturbations that boost T-cell 
infiltration into tumours via counterfactual 
learning of their spatial proteomic profiles

 

Zitong Jerry Wang    1 , Abdullah S. Farooq1, Yu-Jen Chen    1, 

Aman Bhargava    1, Alexander M. Xu    2 & Matt W. Thomson    1 

Cancer progression can be slowed down or halted via the activation 
of either endogenous or engineered T cells and their infiltration of the 
tumour microenvironment. Here we describe a deep-learning model 
that uses large-scale spatial proteomic profiles of tumours to generate 
minimal tumour perturbations that boost T-cell infiltration. The model 
integrates a counterfactual optimization strategy for the generation of the 
perturbations with the prediction of T-cell infiltration as a self-supervised 
machine learning problem. We applied the model to 368 samples of 
metastatic melanoma and colorectal cancer assayed using 40-plex 
imaging mass cytometry, and discovered cohort-dependent combinatorial 
perturbations (CXCL9, CXCL10, CCL22 and CCL18 for melanoma, and 
CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer) that support T-cell 
infiltration across patient cohorts, as confirmed via in vitro experiments. 
Leveraging counterfactual-based predictions of spatial omics data may aid 
the design of cancer therapeutics.

The immune composition of the tumour microenvironment (TME) 
plays a crucial role in determining patient prognosis and response to 
cancer immunotherapies1–3. Immunotherapies that alter the immune 
composition using transplanted or engineered immune cells (chimeric 
antigen receptor T-cell therapy) or remove immunosuppressive signal-
ling (checkpoint inhibitors) have shown exciting results in relapsed 
and refractory tumours in haematological cancers and some solid 
tumours. However, effective therapeutic strategies for most solid 
tumours remain limited4–6. The TME is a complex mixture of immune 
cells, including T cells, B cells, natural killer cells and macrophages, 
as well as stromal cells and tumour cells1. The interactions between 
these cells can either promote or suppress tumour growth and progres-
sion, and ultimately impact patient outcomes. For example, high levels 
of tumour-infiltrating lymphocytes in the TME are associated with 
improved prognosis and response to immunotherapy across multiple 
cancer types7,8. Conversely, an immunosuppressive TME characterized 
by low levels of tumour-infiltrating lymphocytes is associated with 

poor prognosis and reduced response to immunotherapy9. Durable, 
long-term clinical response of T-cell-based immunotherapies is often 
constrained by a lack of T-cell infiltration into the tumour, as seen in 
classically ‘cold’ tumours such as triple-negative breast cancer or pan-
creatic cancer, which have seen little benefit from immunotherapy10–12. 
The precise cellular and molecular factors that limit T-cell infiltration 
into tumours is an open question.

Spatial omics technologies capture the spatial organization of cells 
and molecular signals in intact human tumours with unprecedented 
molecular detail, revealing the relationship between localization of 
different cell types and tens to thousands of molecular signals13. T-cell 
infiltration is modulated by a rich array of signals within the TME such 
as chemokines, adhesion molecules, tumour antigens, immune check-
points and their cognate receptors14. Recent advances in in situ molec-
ular profiling techniques, including spatial transcriptomic15,16 and 
proteomic17,18 methods, simultaneously capture the spatial relation-
ship of tens to thousands of molecular signals and T-cell localization 
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Fig. 1 | An integrated counterfactual optimization framework for discovering 

therapeutic strategies predicted to drive CD8+ T-cell infiltration in human 

tumours. a, Overview of the Morpheus framework, which consists of first training 

a T cell predictor and then generating perturbations. b, Training a neural network 

classifier to predict the presence of CD8+ T cells from multiplexed tissue images 

where cells in the IMC images are pixelated and CD8+ T cells are masked 

(Methods). c, The trained classifier is then used to compute an optimal 

perturbation vector δ(i) per patch by jointly minimizing three loss terms (Lpred, Ldist 

and Lproto). The perturbation δ(i) represents a strategy for altering the level of a 

small number of signalling molecules in patch x(i)
0

 in a way that increases the 

probability of T-cell presence as predicted by the classifier. The optimization also 

favours perturbations that shift the image patch to be more similar to its nearest 

T-cell patches in the training data, shown as Proto. Each perturbation corresponds 

to adjusting the relative intensity of each imaging channel. Taking the median 

across all perturbations produces a whole-tumour perturbation strategy, which 

we assess by perturbing in silico tumour images from a test patient cohort and 

examining the predicted T-cell distribution after perturbation.
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in intact human tumours with micrometre-scale resolution. Imaging 
mass cytometry (IMC) is one such technology that uses metal-labelled 
antibodies to enable simultaneous detection of up to 40 antigens and 
transcripts in intact tissue17.

Recent work on computational methods as applied to multiplexed 
tumour images has primarily focused on predicting patient-level phe-
notypes such as survival by identifying spatial motifs from TMEs19–22. 
These methods have generated valuable insights into how the complex 
composition of TMEs influences patient prognosis and treatment 
response, but they fall short of generating concrete, testable hypoth-
eses for therapeutic interventions that may improve patient outcomes. 
Given the prognostic value of T-cell infiltration into tumours, we need 
computational tools that can predict immune cell localization from 
environmental signals and systematically generate specific, feasible 
tumour perturbations that are predicted to alter the TME to improve 
patient outcomes.

Counterfactual explanations (CFEs) can provide important insight 
in image analysis applications23 but have not been applied to multi-
plexed imaging data. Traditionally, CFEs help clarify machine learn-
ing model decisions by exploring hypothetical scenarios, showing 
how the model’s interpretation would change if a feature in an image 
were altered slightly24. For instance, slight pixel intensity variations 
or minor edge alterations in a tumour’s appearance on an X-ray might 
lead a diagnostic model to classify the scan differently. Numerous CFE 
algorithms exist to elucidate a model’s decision boundaries and shed 
light on its sensitivity to specific image features25. In multiplexed tis-
sue images where each pixel captures detailed molecular information, 
variations in pixel intensity directly correspond to specific molecular 
interventions. Thus, spatial omics data enable the extension of CFEs 
from understanding to predicting actionable interventions.

In this work, we introduce Morpheus, an integrated deep-learning 
framework that first leverages large-scale spatial omics profiles of patient 
tumours to formulate T-cell infiltration prediction as a self-supervised 
machine learning problem, and combines this prediction task with coun-
terfactual optimization to propose tumour perturbations that are pre-
dicted to boost T-cell infiltration. Specifically, we train a convolutional 
neural network to predict T-cell infiltration using spatial maps of the TME 
provided by IMC. We then apply a gradient-based counterfactual genera-
tion strategy to the infiltration neural network to compute changes to 
the signalling molecule levels that increase predicted T-cell abundance. 
We apply Morpheus to melanoma26 and colorectal cancer (CRC) with 
liver metastases27 to discover tumour perturbations that are predicted 
to support T-cell infiltration in tens to hundreds of patients. We provide 
further validation of machine learning-based T-cell infiltration predic-
tion using an additional breast cancer dataset28. For patients with mela-
noma, Morpheus predicts that combinatorial perturbation to the CXCL9, 
CXCL10, CCL22 and CCL18 levels can convert immune-excluded tumours 
to immune-inflamed in a cohort of 69 patients. For CRC liver metastasis, 
Morpheus discovered two cohort-dependent therapeutic strategies 
consisting of blocking different subsets of CXCR4, PD-1, PD-L1 and CYR61 
that are predicted to improve T-cell infiltration in a cohort of 30 patients. 
We experimentally validated Morpheus’ predictions by showing that 
perturbing these targets substantially enhanced T-cell migration in vitro. 
Our work provides a paradigm for counterfactual-based prediction and 
design of cancer therapeutics based on classification of immune system 
activity in spatial omics data.

Results
Counterfactual optimization for therapeutic prediction
The general logic of Morpheus (Methods and Fig. 1a) is to first train, in 
a self-supervised manner, a classifier to predict the presence of CD8+ 
T cells from multiplexed tissue images (Fig. 1b). Then we compute coun-
terfactual instances of the data by performing gradient descent on 
the input image, allowing us to discover perturbations to the tumour 
image that increases the classifier’s predicted likelihood of CD8+ T cells 

being present (Fig. 1c). The altered image represents a perturbation of 
the TME predicted to improve T-cell infiltration. We mask CD8+ T cells 
from all images to prevent the classifier from simply memorizing T-cell 
expression patterns, guiding it instead to learn environmental features 
indicative of T-cell presence.

We leverage IMC profiles of human tumours to train a model to 
predict the spatial distribution of CD8+ T cells in a self-supervised 
manner. We first divide IMC images into patches representing local 
tissue signalling environments, and then we create a masked copy 
of each patch by removing all signals originating from CD8+ T cells 
(Fig. 1b). We train a neural network model to classify whether T cells 
are present or absent using only the masked copy. Using our trained 
model, we apply counterfactual optimization to generate tumour 
perturbations predicted to enhance CD8+ T-cell infiltration (Fig. 1c). 
For each image patch x0 that does not contain CD8+ T cells, our optimi-
zation algorithm searches for a perturbation δ such that our classifier 
f predicts the perturbed patch xp = x0 + δ as having T cells; hence, xp is 
referred to as a counterfactual instance. Furthermore, our algorithm 
favours simple and realistic strategies by minimizing the number 
of molecules perturbed while also ensuring that the counterfactual 
instance is not far from image patches in our training data, so we can be 
more confident of the model’s prediction. We can obtain a perturbation 
δ with these desired properties by solving a constrained optimization 
problem (Methods).

Since drug treatments cannot act at the spatial resolution of indi-
vidual micrometre-scale pixels, we constrain our search space to only 
perturbations that affect all cells in the image uniformly. Specifically, 
we only search for perturbations that change the level of any molecule 
by the same relative amount across all cells in an image.

Taken together, our algorithm obtains an altered image predicted 
to contain T cells from an original image, which lacks T cells, by mini-
mally perturbing the original image in the direction of the nearest 
training patch containing T cells until the classifier predicts the per-
turbed image to contain T cells. Since our strategy may find different 
perturbations for different tumour patches, we reduce the set of 
patch-wise perturbations {δ(i)}

i

 to a whole-tumour perturbation by 
taking the median across the entire set (Fig. 1c).

Convolutional neural networks predict T-cell distribution
We applied Morpheus to two publicly available IMC datasets of tumours 
from patients with metastatic melanoma26 and CRC with liver metas-
tases27 (Fig. 2a). We validate the infiltration prediction on an addi-
tional breast cancer dataset28. While this breast cancer data focuses 
on cell-type markers over functional modulators of T-cell infiltration, 
making it unsuitable for therapeutic prediction, it serves to further 
validate our machine learning-based prediction of T-cell infiltration.

The melanoma dataset26 was obtained by IMC imaging of 159 
tumour cores from 69 patients with stage III or IV metastatic melanoma. 
Each tissue was imaged across 39 molecular channels, consisting of 
markers for tumour, immune and stromal cells, as well as 11 different 
chemokines (RNA) (Methods). The CRC dataset27 consists of 209 tissue 
sections taken from 30 patients imaged across 42 channels, including 
60 sections from primary CRC tumours, 89 sections CRC metastases 
to the liver and 60 ‘healthy’ liver sections obtained away from the 
metastases (Methods). The breast cancer dataset28 was obtained by 
IMC imaging of 749 breast tumour cores from 693 patients. The tissues 
were imaged across 37 channels, consisting of markers for tumour, 
lymphoid, myeloid and stromal cells (Methods).

For each of the three tumour datasets, we trained a separate U-Net 
classifier that effectively predicts CD8+ T-cell infiltration level in unseen 
tumour sections (Methods). The two classifiers trained on melanoma 
and CRC datasets achieved the best performance (Supplementary 
Table 4) with an AUROC (area under the receiver operating character-
istic curve) of 0.87 and 0.89, respectively, whereas the classifier trained 
on breast tumours achieved an AUROC of 0.83 (Supplementary Fig. 2). 
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A limited overlap in imaging channel across the three datasets makes it 
difficult to compare the TME across cancer types or to determine how 
difference in the TME between the three cancer types affects Morpheus’ 
ability to predict T-cell presence. Figure 2b shows examples of actual 
and predicted T-cell distributions in tumour sections, demonstrating 
that our classifiers accurately predict the general distribution of T cells. 
For each tissue section of a cancer type, the predictions were obtained 
by applying the corresponding U-Net classifier to each image patch 
independently. Comparing the true proportion of T-cell patches in 
a tissue section against our predicted proportion also shows strong 
agreement (Fig. 2c). The true proportion of patches with T cells is 

calculated by dividing the number of patches within a tissue section 
that contain CD8+ T cells by the total number of patches within that 
section. We quantify the performance of our U-Nets on the entire test 
dataset using the root mean square error (RMSE) (equation (3), Meth-
ods), which represents the mean difference between our predicted 
proportion and the true proportion per tumour section (Fig. 2d). Our 
classifiers perform well on liver tumour and melanoma, achieving an 
RMSE of only 7% and 8%, respectively, and a relatively poorer perfor-
mance of 11% on breast tumour. Taken together, these results suggest 
that our classifier can accurately predict the T-cell infiltration status 
of multiple tumour types.
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Fig. 2 | U-Net classifiers accurately predict T-cell distribution in IMC images 

of melanoma, metastatic liver and breast tumour. a, Histograms showing the 

distribution of tumour cores per patient and CD8+ T-cell fractions per core across 

all three datasets and data splits. b, Predicted and actual T-cell distribution of 

tissue sections from test cohorts in melanoma, liver tumour and breast tumour 

dataset. c, Predicted and true proportion of patches with T cells within a tissue 

section; each dot corresponds to a tissue section, and the diagonal black line 

indicates perfect prediction. d, The RMSE (equation (3), Methods) across all (test) 

tissue sections for three different classes of models.
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To gain insight into the relative importance of nonlinearity and 
spatial information in the performance of the U-Net on the T-cell clas-
sification task, we compared the U-Nets’ performance with a logistic 
regression model and a multi-layer perceptron (MLP). Both the logistic 
regression and MLP models are given only mean channel intensities as 
input, so neither have explicit spatial information. Furthermore, the 
logistic regression model is a linear model with a threshold, whereas 
the MLP is a nonlinear model. Figure 2d shows that across all three can-
cer datasets, the MLP classifier consistently outperforms the logistic 
regression model, reducing RMSE by 20–40% to suggest that there 
are considerable nonlinear interactions between different molecular 
features in terms of their effect on T-cell localization. The importance of 
spatial features on the T-cell prediction task, however, is less consistent 
across cancer types. Figure 2d shows that for predicting T cells in breast 
tumour, the U-Net model offers negligible boost in performance rela-
tive to the MLP model (<2% RMSE reduction), whereas for liver tumour, 
the U-Net model achieved an RMSE 30% lower compared with the MLP 
model. This result suggests that the spatial organization of signals may 
have a stronger influence on CD8+ T-cell localization in liver tumour 
compared with breast tumour.

Applying Morpheus to metastatic melanoma samples
Applying our counterfactual optimization procedure using the U-Net 
classifier trained on melanoma IMC images, we discovered a combi-
natorial therapy predicted to be highly effective in improving T-cell 
infiltration in patients with melanoma. Currently, there are substantial 
efforts to augment T-cell therapy using chemokines29, which are a 
family of secreted proteins that are known for their ability to stimulate 
cell migration30. Since this dataset is unique in its broad coverage of 
chemokine profiles, we applied Morpheus to systematically search for 
optimal chemokine therapy by restricting the optimization algorithm 
to only perturb chemokines. By optimizing over multiple chemokines, 
Morpheus opens the door to combinatorial chemokine therapeutics 
that has the potential to more effectively enhance T-cell infiltration 
into tumours. Figure 3a shows that patients from the training cohort 
separate into two clusters based on hierarchical clustering of pertur-
bations computed for each patient. Taking median across all patients 
in cluster 1, the optimized perturbation is to increase the CXCL9 level 
by 215%, whereas in patient cluster 2, the optimized perturbation con-
sists of increasing CXCL10 level by 88% while decreasing CCL18 and 
CCL22 levels by 100% and 100%, respectively (Fig. 3a). Both CXCL9 and 
CXCL10 are well known for playing a role in the recruitment of CD8+ 
T cells to tumours. However, CCL22 is known to be a key chemokine 
for recruiting regulatory T cells31 and CCL18 is known to induce an 
M2-macrophage phenotype32, so their expression likely promotes an 
immunosuppressive microenvironment inhibitory to T-cell infiltra-
tion and function.

Figure 3b shows that the choice of which of these two strategies 
does not appear to be related to a patient’s cancer stage. We do find, 
however, that nearly all chemokines have higher mean expression in 
the tumours of patients in cluster 2 compared with cluster 1, while there 
are no significant differences between the two groups in terms of the 
cell-type compositions within tumours (Fig. 3c). Since the levels of 
CCL22 and CCL18 are nearly 25% higher in patients from cluster 2 and 
both chemokines have been implicated in having an inhibitory effect 
on T-cell infiltration, it is reasonable that the optimization algorithm 
suggests inhibiting CCL18 and CCL22 only for patients in cluster 2. 
However, the switch from boosting CXCL9 to CXCL10 is not as straight-
forward. A possible explanation is that boosting CXCL10 is important 
when blocking CCL18 and CCL22 in order for the perturbed patches to 
stay close to the data manifold, leading to more realistic tissue environ-
ments. Interestingly, the single-cell nature of the dataset appears to be 
necessary for discovering this strategy as counterfactuals generated 
using pseudobulk data led to different strategies (Extended Data Fig. 2a 
and Supplementary Note 3).

Morpheus selected perturbations that would make the 
chemokine composition of a TME more similar to T-cell-rich regions 
of immune-infiltrated tumours. Figure 3d shows that melanoma 
tissue patches can be clustered into distinct groups based on their 
chemokine concentration profile. One cluster (highlighted in blue) 
contains exactly the patches from immune-infiltrated tumours that 
contain both tumour and T cells, which likely represents a chemokine 
signature that is suitable for T-cell infiltration. Alternately, a second 
cluster (highlighted in red) that contains patches from immune-desert 
tumours that have tumour cells but no T cells likely represents an unfa-
vourable chemokine signature. Compared with the cluster highlighted 
in red, Fig. 3d shows that the cluster highlighted in blue contains ele-
vated levels of CXCL9 and CXCL10 and reduced levels of CCL22, which 
partially agrees with the perturbation strategy (Fig. 3a) discovered 
by Morpheus. Lastly, Fig. 3e shows that our four selected chemokine 
targets cannot simply be predicted from correlation of chemokine 
levels with the presence of CD8+ T cells, as both CCL18 and CCL22 are 
weakly correlated (<0.2) with CD8+ T cells, even though the optimized 
perturbations require inhibiting both chemokines, suggesting the pres-
ence of notable nonlinear effects not captured by correlations alone.

We can directly observe how Morpheus searches for efficient per-
turbations by viewing both the original patch and perturbed patches in 
a dimensionally reduced space. Figure 3f (top) shows a UMAP (Uniform 
Manifold Approximation and Projection) projection where each point 
represents the chemokine profile of an IMC patch. T-cell patches (with 
their CD8+ T cells masked) are well separated from patches without 
CD8+ T cells. The coloured arrows in the bottom UMAP of Fig. 3f illus-
trate the perturbation for each patch as computed by Morpheus and 
demonstrate two key features of our algorithm. First, optimized pertur-
bations push patches without T cells towards the region in UMAP space 
occupied by T-cell-infiltrated patches. Second, the arrows in Fig. 3c are 
coloured to show that optimized perturbations seem efficient in that 
patches are perturbed just far enough to land in the desired region of 
space. Specifically, red points that start out on the right edge end up 
closer to the right after perturbation (regions iii and iv), while points 
that start on the left/bottom edge end up closer to the left/bottom 
(region i), respectively. We make this observation while noting that 
UMAP, although designed to preserve the topological structure of 
the data, is not a strictly distance-preserving transformation33. Fur-
thermore, the pie charts (i–iv) are coloured by the patient of origin 
to show that the region of space where points are being perturbed 
to is not occupied by tissue samples from a single patient with highly 
infiltrated tumour. Rather, these regions consist of tissue samples 
from multiple patients, suggesting that our optimization procedure 
can synthesize information from different patients when searching 
for therapeutic strategies.

After applying the second perturbation strategy from Fig. 3a in 
silico to IMC images of a tumour, Fig. 3g shows that T-cell infiltration 
level (defined as the proportion of tumour patches with T cells) is 
predicted to increase by 20-fold. In this dataset, patients that respond 
favourably to immunotherapy tend to have significantly higher levels 
of T cells within tumours before treatment (t-test, P = 0.006; Supple-
mentary Fig. 3). We applied both perturbation strategies on patients 
in our test cohort in silico and show that this predicted improvement 
holds across nearly all 14 patients from the test group, boosting T-cell 
infiltration level from an average of 21% across samples to a predicted 
50% post perturbation (Fig. 3h).

The combinatorial nature of our optimized perturbation strategy 
is crucial to its predicted effectiveness. We systematically explored the 
importance of combinatorial perturbation by changing parameter β of 
equation (4), which adjusts the sparsity of the strategy, where a more 
sparse strategy means that fewer molecules are perturbed. Figure 3i 
shows that perturbing multiple targets is predicted to be necessary for 
driving significant T-cell infiltration across multiple patients, with the 
best perturbation strategy involving one target predicted to achieve 
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30% less T-cell level compared with the optimal strategy involving 
four targets. In conclusion, within the scope of the chemokine targets 
considered, combinatorial perturbation of the TME appears necessary 
for improving T-cell infiltration in metastatic melanoma.

Applying Morpheus to CRC with liver metastases samples
Applying Morpheus to IMC images from the CRC cohort, we discovered 
two patient-dependent therapies predicted to be highly effective in 
improving T-cell infiltration (Fig. 4a). Taking median over patients in 
the first cluster, the optimized strategy involves inhibiting PD-1, PD-L1 
and CXCR4. Meanwhile, for the second group of patients, the optimized 
strategy involves inhibiting CYR61, PD-1, PD-L1 and CXCR4 (Fig. 4a). 
Interestingly, all four of the perturbation targets correlated poorly 
with the presence of CD8+ T cells compared with the other proteins 
that were not selected as perturbation targets (Fig. 4b), suggesting 
the presence of substantial spatial and nonlinear effects not captured 
by correlations alone.

All perturbation targets identified by our optimization procedure 
have been found to play crucial roles in suppressing T-cell function in 
the TME, and treating patients with inhibitors against subsets of the 
selected targets has been shown to improve T-cell infiltration in human 
CRC liver metastases. Tumour-associated lymphatic vessels promote 
T-cell exit from tumour via the CXCL12/CXCR4 axis34, and the PD-1/
PD-L1 pathway inhibits CD8+ T-cell activity and infiltration in tumours. 
In addition, CYR61 is a chemoattractant and was recently shown to 
drive M2 tumour-associated macrophage infiltration in patients with 
CRC liver metastases27. Inhibition of both PD-1 and CXCR4, which were 
consistently selected by Morpheus as targets, has already been shown 
to increase CD8+ T-cell infiltration in preclinical mouse models of colon 
cancer35,36. The single-cell nature of the CRC dataset appears to be nec-
essary for discovering this strategy as counterfactuals generated using 
pseudobulk data led to different strategies (Extended Data Fig. 2b and 
Supplementary Note 3).

The emergence of the two distinct perturbation strategies may 
be explained by variation in liver fat build-up among patients. Patient 
cluster 1 is made up of significantly more patients with fatty liver disease 
(FLD) (67%) compared with patient cluster 2 (12%) (Fig. 4c). Further-
more, Fig. 4d shows that both YAP and CYR61 levels are significantly 

higher in tumours from patient cluster 1 by 50% and 3.5%, respectively. 
Indeed, CYR61 is known to be associated with non-alcoholic FLD27 and 
YAP is a transcription coregulator that induces CYR61 expression37. 
However, despite patients in cluster 1 having higher levels of CYR61, 
it is only for patients in cluster 2 where the optimal strategy involves 
blocking CYR61. We postulate that this seemingly paradoxical finding 
may arise because removing CYR61 from patients in cluster 1 repre-
sents a more pronounced perturbation, given their inherently higher 
concentration. A perturbation of this magnitude would likely shift the 
tumour profile substantially away from the data manifold, where the 
classifier’s prediction about the perturbation’s effect becomes less 
reliable; hence, such a perturbation would be heavily penalized during 
optimization owing to the Lproto term.

Using only raw image patches, Morpheus discovers tissue- 
dependent perturbation strategies (Fig. 4e). As depicted in Fig. 4e, by 
aggregating perturbations at the individual tissue level, we observe 
that the optimized perturbation for ‘healthy’ liver sections is straight-
forward, necessitating only the inhibition of CXCR4. Recall ‘healthy’ 
sections are samples obtained away from sites of metastasis. By 
contrast, promoting T-cell infiltration into primary colon tumours 
is anticipated to involve targeting a minimum of three signals. Mor-
pheus finds that liver metastases appear to fall between these two 
tissue types. Furthermore, direct comparison between perturbations 
optimized for metastatic tumour and primary tumour samples does 
not reveal a notable difference in strategy (Supplementary Fig. 1). 
We can partly understand the discrepancy between tissues by plot-
ting a UMAP projection of all T-cell patches from the three tissue 
types (Fig. 4f, left). The clear separation between T-cell patches from 
‘healthy’ tissue and those from primary tumours underscores that 
the signalling compositions driving T-cell infiltration likely differ 
substantially between the two tissue types, prompting Morpheus to 
identify markedly different perturbation strategies. Furthermore, 
some patches from metastatic tumours co-localize with ‘healthy’ 
tissue patches in UMAP space, while other patches co-localize with 
primary tumour patches. This observation again aligns with our previ-
ous result, where optimized perturbation strategies for metastases 
samples share similarities with strategies for either ‘healthy’ tissue 
or primary tumour (Fig. 4e).

Fig. 3 | Combinatorial chemokine therapy predicted to drive T-cell infiltration 

in patients with metastatic melanoma. a, Whole-tumour perturbations 

optimized across IMC images of patients (row) from the training cohort, with 

bar graph showing the median relative change in intensity for each molecule. 

b, Distribution of cancer stages among patients within two clusters; grey 

indicates unknown stage. c, Volcano plot comparing chemokine level and 

cell-type abundance from patient clusters 1 and 2, computed using mean 

values and Wilcoxon rank-sum test with Šidák correction. Grey indicates 

non-statistical significance. Non-significant chemokines not shown: CXCL12 

(fold change = 0.96, P = 1) and CCL8 (fold change = 0.93, P = 0.91). d, Patch-

wise chemokine profile (left); one-dimensional heatmap (right): infiltration 

status (light/dark = from infiltrated/deserted tumour), tumour cell (light/

dark = present/absent), CD8+ T cells (light/dark = present/absent). e, Patch-wise 

correlation between chemokine signals and the presence of CD8+ T cells. f, 

Top: UMAP projection of tumour patches (chemokine channels) shows a clear 

separation of masked patches with and without T cells. Bottom: coloured arrows 

connect UMAP projection of patches without T cells and their corresponding 

counterfactual (perturbed) patch, where the colours correspond to k-nearest 

neighbour clusters (i–iv) of the counterfactual patches. Pie charts (i–iv) show 

the distribution of patients whose original tumour patches are found in the 

corresponding cluster regions in the UMAP. g, Cell maps computed from 

a patient’s IMC image, showing the distribution of T cells before and after 

perturbation. h, Original versus perturbed (predicted) mean infiltration level 

across all patients (test cohort) with 95% confidence interval (only shown for 

patients with more than two samples). i, Mean infiltration level across all patients 

(test cohort) for optimized perturbation strategies of varying sparsity. The error 

bar represents 95% confidence interval.

Fig. 4 | Blocking subsets of PD-L1, CXCR4, PD-1 and CYR61 predicted to 

drive T-cell infiltration in CRC cohort. a, Optimized tumour perturbations 

aggregated to the patient (row) level (train cohort). The bar graph shows the 

median relative change in intensity for each molecule across all patients within 

their cluster. b, Patch-wise correlation between the levels of different molecules 

and the presence of CD8+ T cells. c, Pie charts show the proportion of patients 

in each cluster that have FLD; P value from the hypergeometric test. d, Volcano 

plot comparing molecule levels and cell-type abundance between the two 

patient cluster using tumour tissues, computed using mean values and Wilcoxon 

rank-sum test with Šidák correction. Cell types include natural killer (NK) cells, 

myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs) and others.  

e, Optimized perturbations aggregated to the level of tissue samples (row).  

f, UMAP projection of IMC patches. Left: UMAP shows T-cell patches coloured  

by the tissue samples that they are taken from. Right: UMAP shows 

counterfactual (perturbed) instances (blue) optimized for tumour patches 

without T cells (red). g, Line plots show the predicted T-cell infiltration level for 

each tissue section from the test cohort, before and after perturbation. Bar plots 

show the predicted mean T-cell infiltration level for each test patient. h, Predicted 

mean infiltration level across all test patients using perturbation strategies of 

varying sparsity, obtained by varying β in equation (4). The error bar represents 

95% confidence interval.
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Despite the CRC dataset comprising a mixture of healthy, tumour 
and hybrid metastatic samples, Morpheus targets the most pertinent 
tissue type when optimizing perturbations. During both the model 
training and counterfactual optimization phases, we did not make 
specific efforts to segregate the three tissue types. Furthermore, we did 
not provide tissue type labels or any metadata. Despite these nuances, 
Fig. 4f shows that the counterfactual instances for tumour patches (dark 
blue) from primary and metastases samples are mostly perturbed to be 
near T-cell patches from primary (cyan) and metastatic tumour (gold), 
instead of being perturbed to be similar to T-cell patches from ‘healthy’ 
tumours (purple). This result is partly a consequence of our prototypical 
constraint, which encourages patches to be perturbed towards the clos-
est T-cell patch. For a patch from a metastatic tumour without T cells, 
the closest (most similar) T-cell patch is likely also from a metastatic 
tumour than from a ‘healthy’ tissue. However, there are occasional 
exceptions where T-cell patches from ‘healthy’ tissues can influence 
the optimization of tumour tissues, as outlined by the dashed ellipse 
in Fig. 4f, especially if they share similar features as tumour regions.

The two therapeutic strategies that we discovered generalize to 
patients in our test cohort (Fig. 4g,h). Given that we have two thera-
peutic strategies, one enriched for patients with FLD and another for 
patients without FLD, we apply different perturbation strategies in 
silico across all test patients depending on their FLD status. Aggregated 
to the patient level, Fig. 4g shows that the CD8+ T-cell infiltration level 
is predicted to increase for nearly all patients, significantly boosting 
mean infiltration level from 17% to a predicted 35% post perturbation 
(Fig. 4h). However, when comparing individual tissue samples, Fig. 4g 
reveals substantial variation in the predicted response to perturbation 
among samples from the same patient and tissue types. In patient 7, the 
two metastatic tumour sample is predicted to see a nearly sevenfold 
increase in T-cell infiltration after perturbation, yet almost no change 
is expected for patient 7’s other three primary and one metastatic sam-
ples. Similar patterns are observed in patients 14 and 17. This marked 
variability in response among a substantial portion of test patients 
underscores the challenges posed by intra-tumour and inter-patient 
heterogeneity in devising therapies for CRC with liver metastases. This 
result further implies that, for studying CRC with liver metastases, 
collecting numerous tumour sections per patient could be as crucial 
as establishing a large patient cohort.

Lastly, combinatorial perturbation is again predicted to be neces-
sary to drive significant T-cell infiltration in large patient cohorts. By 
increasing β in equation (4), we generated strategies with between 
one and five total targets, where perturbing at least four targets is 
predicted to be necessary to produce a statistically significant boost 
to T-cell infiltration (Fig. 4h).

Experimental validation of predicted perturbation strategies
Morpheus-derived strategies boost T-cell level in in vitro migration 
assays using human melanoma and CRC cells. We tested Morpheus’ 
predictions using a transwell migration assay (Methods), which con-
sists of two chambers separated by a permeable membrane allowing 
for selective passage of molecules and cells (Fig. 5a). We place human 
peripheral blood mononuclear cells (PBMCs) initially in the top cham-
ber and human cancer cells in the bottom chamber, where we apply 
different perturbations proposed by Morpheus and count the number 
of CD8+ T cells that infiltrate the bottom chamber after 4 h using flow 
cytometry (Methods). This transwell/co-culture system is a common 
method for assessing the effect of different perturbations in alter-
ing the migratory capacity of T cells towards cancer cells. The PBMC 
population contains a mixture of immune cell types, including CD8+ 
T cells. For CRC, perturbations are applied to both chambers as some 
target molecules are expressed by immune cells (for example, PD-L1 
and CXCR4). Similar transwell/co-culture systems are commonly used 
for assessing the effect of different perturbations in altering the migra-
tory capacity of T cells towards cancer cells38–40.

We used the human A375 melanoma cell line to test both sets of 
melanoma perturbations (Fig. 3a). Directly adding either CXCL9 pro-
teins alone or a triple strategy consisting of CXCL10, anti-CCL22 anti-
body and anti-CCL18 antibody increased the T-cell level in the tumour 
chamber by 17- and 14-fold, respectively (paired t-test, P = 1 × 10−3 and 
1 × 10−4, respectively; Fig. 5b). Although CXCL9 and CXCL10 are often 
considered to have similar functions as they both bind to the receptor 
CXCR3 and act as chemoattractants for CD8+ T cells, Morpheus did 
not predict the addition of CXCL10 alone as an effective perturbation; 
rather, Morpheus always predicted CXCL10 perturbation as one part 
of a combinatorial perturbation (Fig. 3a). We found that, in fact, the 
addition of CXCL10 alone did not lead to any significant increase in 
the T-cell level compared with the perturbed control (paired t-test, 
P = 0.09; Fig. 5b).

We used the human HCT116 colorectal cell line to test both sets 
of CRC perturbations (Fig. 4a), by adding either blocking antibodies 
against PD-1, PD-L1 and CXCR4 or an additional blocking antibody 
against CYR61. In close agreement with model predictions (Fig. 4h), 
Morpheus’ four-target combinatorial perturbation increased T-cell 
abundance by twofold compared with unperturbed control (paired 
t-test, P = 2 × 10−3). The Morpheus four-target strategy also significantly 
outperforms anti-PD-1 and anti-PD-L1 treatment alone in our in vitro 
assays where we observed a 1.3-fold and 1.4-fold increase in T-cell abun-
dance for anti-PD-1 and anti-PD-L1, respectively. The T-cell abundance 
change induced by anti-PD-1 and anti-PD-L1, which represent standard 
immunotherapies, was significantly lower than that induced by Mor-
pheus across replicates as quantified by a paired t-test with P = 0.02 
for Morpheus four-target versus PD-1 and P = 0.04 for Morpheus 
four-target versus PD-L1 (Fig. 5c). Unlike the four-target combination, 
we did not observe a significant increase in T-cell infiltration with the 
three-target strategy predicted by Morpheus (inhibition PD-1, PD-L1 
and CXCR4) (1.5-fold increase, paired t-test, P = 0.09). We hypothesize 
that this relatively modest improvement from this three-target strategy 
is due to the absence of lymphatic endothelial cells in our in vitro assay. 
It was recently shown that tumour-associated lymphatic vessels control 
T-cell exit from tumour through the interaction between CXCL12 and 
CXCR4, and inhibiting CXCR4 boosts the quantity of intratumoural 
T cells specifically in tumours with lymphatic vessel-derived CXCL1234.

Altogether, we show that experimentally perturbing molecular tar-
gets according to Morpheus’ predicted strategy consistently improves 
the ability of T cells to migrate towards cancer cells in vitro. For cancers 
for which PD-1/PD-L1 therapy is ineffective, Morpheus suggests new 
alternatives with promising in vitro results.

Discussion
Our integrated deep-learning framework, Morpheus, combines deep 
learning with counterfactual optimization to directly predict thera-
peutic strategies from spatial omics data. One of the major strengths 
of Morpheus is that it scales efficiently to deal with large diverse sets of 
patient samples including metachronous tissue from the same patients 
but different sites, which will be crucial as more spatial transcriptomics 
and proteomics datasets are quickly becoming available41.

Morpheus identifies fundamentally different strategies to increase 
T-cell abundance, beyond just enhancing the rate of T-cell entry into 
the tumour. In the literature, the term ‘infiltration’ is often used as a 
catch-all term to refer to T-cell abundance. For clarity, while we align 
with this terminology, our focus is on strategies that boost overall T-cell 
abundance. For example, Morpheus’ strategy of inhibiting CXCR4 
prevents T cells from exiting the tumour via the vasculature, thereby 
increasing T-cell abundance by reducing outflow. This illustrates Mor-
pheus’ ability to reveal diverse mechanisms for enhancing T-cell pres-
ence in tumours.

While the molecular targets identified by Morpheus require exper-
imental validation to confirm their causal role in T-cell infiltration, both 
the biological context and Morpheus’ counterfactual optimization 
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objective strengthen their potential value. Biologically, many effects 
of T cells on their microenvironment feed back to influence further 
T-cell infiltration42–44, creating cyclical relationships where effects 
may become causes. For example, T cells promote tertiary lymphoid 
structures supporting further infiltration42, release cytokines such 
as interferon-γ (IFNγ) to both inhibit and facilitate T-cell infiltration 
by inducing PD-L1 expression and upregulating chemokines43, and 
enhance vascular permeability to facilitate additional T-cell infiltra-
tion44. Morpheus’ counterfactual optimization objective helps to 
address the association versus causation challenge by focusing on 
minimal interventions with significant effects. This approach attempts 
to prioritize direct causal factors, which typically have stronger associa-
tions with outcomes than non-causal correlates. While these factors 
do not guarantee causality, they may increase the likelihood that the 
identified targets meaningfully influence T-cell infiltration. Nonethe-
less, further experimental validation remains necessary to confirm 
any causal relationships.

For future work, we would like to apply Morpheus to spatial 
transcriptomics datasets with hundreds to thousands of molecular 
channels. Although spatial transcriptomics can profile substantially 
more molecules compared with spatial proteomic techniques15,16, the 
number of spatial transcriptomic profiles of human tumours is cur-
rently limited owing to the cost, with most public datasets containing 
single tissue sections from one to five patients, which is far too small 
to apply Morpheus. However, spatial transcriptomics is likely to be 
more standardized compared with proteomics, which use customized 
panels. As commercial platforms for spatial transcriptomics start to 
come online45, we will likely be seeing large-scale spatial transcriptom-
ics datasets in the near future, with ~70–90% of the same probes shared 
between experiments.

A technical extension of Morpheus involves incorporating prior 
knowledge of gene–gene interactions to model the causal relations 
between genes. Molecular features in tissue profiles can exhibit strong 
dependencies; therefore, changing the level of one molecule can affect 
the expression of others. For example, increased levels of IFNγ in the 
TME can upregulate the expression of PD-L1 on tumour cells46. To be 
more realistic and actionable, a counterfactual should maintain these 

known causal relations. We can apply a regularizer to penalize counter-
factuals that are less feasible according to established gene interactions 
from knowledge graphs, such as Gene Ontology47.

Other extensions of Morpheus include predicting cell-type- 
specific perturbations, which can be done by directly restricting the 
perturbation to only alter signals within specific cell types. In addition, 
although we applied Morpheus to the specific problem of driving T cells 
to infiltrate solid tumours, we can generalize our framework to predict 
candidate therapeutics that alter the localization of other cell types. For 
example, Morpheus can train a classifier model to predict localization of 
tumour-associated macrophages and compute perturbations predicted 
to reduce their abundance in the TME.

In this work, we focused on identifying generalized therapies by 
pooling predictions across multiple patient samples, but we can also 
apply Morpheus to find personalized therapy for treating individual 
patients. The variation in the optimized perturbations that we observe 
among patients in both melanoma and liver datasets suggests that per-
sonalized treatments could be substantially more effective compared 
with generalized therapies (Figs. 3a and 4a). Furthermore, Fig. 4g shows 
that a therapeutic strategy could have a highly variable effect even 
across different tissue samples from the same patient. This variability 
suggests that to generate therapy for an individual patient, it may be 
necessary to acquire substantial quantities of biopsy data. We can then 
apply our optimization procedure to a random subset of samples and 
then test the resulting perturbation strategy on the remaining samples 
to see how well the strategy is predicted to perform across an entire 
tumour or other primary and secondary tumours.

Incorporating Morpheus in a closed loop with experimental data 
collection is another promising direction for future work. Data can be 
collected from patients or animal models with perturbed/engineered 
signalling context, and this data can be easily fed back into the classi-
fier model to refine the model’s prediction. The perturbation could be 
based on what the model predicts to be effective interventions, as is 
the case with Morpheus. We can also study tissue samples on which the 
model tends to make the most mistake and train the model specifically 
using samples from similar sources, such as similar patient strata or 
disease state.
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Fig. 5 | In vitro experimental validation of Morpheus predictions. a, T-cell 

transwell migration assay for assessing the effect of Morpheus-derived 

perturbation strategies on CD8+ T-cell infiltration into an in vitro tumour 

compartment. Human PBMCs are placed into the top chamber, and a human 

tumour cell line (A375 for melanoma and HCT116 for CRC) is placed into the 

bottom chamber. We measure CD8+ T-cell infiltration into the bottom chamber 

after 4 h in the presence or absence of signalling perturbations predicted by 

Morpheus. Signalling perturbations include both signalling protein addition and 

blocking antibodies, which are indicated by α/anti. b, Log fold change in CD8+ 

T-cell abundance within the lower chamber containing A375 melanoma cells 

relative to CD8+ T-cell abundance in unperturbed controls. CXCL9 and {CXCL10, 

αCCL18, αCCL22} are Morpheus predicted infiltration strategies, while the 

CXCL10 addition alone strategy is shown for comparison to CXCL9 alone.  

c, Log fold change in CD8+ T-cell abundance within the lower chamber containing 

HCT116 CRC cells relative to CD8+ T-cell abundance in unperturbed control. 

{αPD-1, αPD-L1, αCXCR4} and {αPD-1, αPD-L1, αCXCR4, αCYR61} are Morpheus 

predicted strategies. The αPD-1 and αPD-L1 strategies, blocking PD-1 or PD-L1, 

are clinical immunotherapy strategies shown for comparison. Each perturbation 

trial was normalized to its paired control trial. *P < 5 × 10−2 and **P < 1 × 10−2. 

Two-sided paired t-tests used to assess significance; see Supplementary Tables 

6 and 7 for raw data. The error bars represent the mean ± s.e.m. of independent 

biological replicates and dots indicate individual n = 8 and n = 9 replicate values 

for b and c, respectively (n = 12 for bars 2–3 in c).
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Methods
Description of IMC datasets
All datasets used in this paper are publicly available. Metastatic mela-
noma dataset from Hoch et al.26 contains 159 images or cores taken 
from 69 patients, collected from sites including skin and lymph node. 
CRC liver metastases dataset from Wang et al.27 contains 209 images or 
cores taken from 30 patients. Breast tumour dataset from Danenberg 
et al.28 contains 693 images or cores taken from 693 patients. The RNA 
and protein panels used for each of the three datasets are listed in 
Supplementary Table 8.

Data split
For all three IMC datasets, we followed the same data splitting scheme 
to divide patients into three different groups (training, validation and 
testing) while ensuring similar class balance across the groups, which 
in our case means that the proportion of image patches with and with-
out T cells is roughly equal across the three groups for each dataset. 
Patients are shuffled between the three groups until three criteria 
are met: (1) the number of patients across the three groups follow a 
65/15/20 ratio, (2) the difference in class proportion between any two 
of the three groups is less than 2%, and (3) the training set contains at 
least 65% of total patches. The actual data splits used in the paper are 
described in Supplementary Table 9.

Overview of the Morpheus framework
The Morpheus framework consists of two main steps, the first being 
self-supervised training of a classifier to predict the presence of CD8+ 
T cells from multiplexed tissue images (Fig. 1b). Then we compute 
counterfactual instances of the data by performing gradient descent 
on the input image, allowing us to discover perturbations to the tumour 
image that increases the classifier’s predicted likelihood of CD8+ T cells 
being present (Fig. 1c). The perturbed image corresponds directly to 
a perturbation of the TME predicted to improve T-cell infiltration. We 
mask CD8+ T cells from all images to prevent the classifier from simply 
memorizing T-cell expression patterns, guiding it instead to learn 
environmental features indicative of T-cell presence. We will describe 
both model training and counterfactual optimization in detail in the 
following sections.

Training a classifier to predict T-cell localization
We leverage IMC profiles of human tumours to train a classifier to pre-
dict the spatial distribution of CD8+ T cells in a self-supervised manner.

Cell segmentation and phenotyping. Raw IMC images were processed 
to obtain single-cell masks using the ImcSegmentationPipeline48. The 
segmentation process began by converting raw data to ome-tiff format, 
followed by pixel classification in Ilastik49, which segmented images 
into nuclear, cytoplasmic and background regions. Probability maps 
generated from Ilastik were further processed in CellProfiler50 to create 
single-cell masks. To correct for channel spillover, a non-negative least 
squares method was applied using CATALYST51. For cell phenotyping, we 
adopted an automated approach complemented by manual curation. 
Single-cell segmentation masks were overlaid with single-channel tiff 
images to extract mean marker expression values for each cell, which 
were then arcsinh transformed using a cofactor of 1 and censored at the 
99th percentile. Cell clusters were determined by applying PhenoGraph52 
on the single-cell expression vectors using default hyperparameters. 
Channel gating was used to refine the identification of specific cell popu-
lations. Two levels of PhenoGraph clustering were performed: the first 
level identified major cell types (immune, stromal and tumour) and the 
second level further classified immune cells into subtypes. For the pur-
pose of Morpheus, only identification of CD8+ T cells and tumour cells 
was required. Manual curation of cell clusters was guided by specific 
proteins (Supplementary Table 10) to ensure accurate classification. 
See Supplementary Table 3 for cell-type distribution.

Cell pixelation of IMC images. The purpose of model training is for 
the model to learn molecular features of a tissue environment that sup-
ports the presence of CD8+ T cells, so it is important for us to remove 
features of the image that are predictive of CD8+ T-cell presence but are 
not part of the cell’s environment, such as the expression of the T cell 
itself. A simple masking strategy of zeroing out all pixels belonging 
to CD8+ T cells will introduce contiguous regions of zeros to image 
patches with T cells, which is an artificial feature that is nonetheless 
highly predictive of T-cell presence and hence will likely be the main 
feature learned by a model during training. To circumvent this issue, we 
first apply a cell ‘pixelation’ step to each IMC image, where we reduce 
each cell to a single pixel positioned at the cell’s centroid. The value 
of this pixel is the sum of all pixels originally associated with the cell, 
representing the total signal from each channel within the cell. In this 
way, we can simply mask this ‘pixelated’ version of the image by zeroing 
all pixels representing CD8+ T cells. Our strategy is effective at masking 
T cells without introducing an artificial signal whereby simply removing 
cells at random will increase the chance that T cells are predicted to be 
present (Supplementary Note 1, Supplementary Table 1).

Patching and T-cell masking. From the set of ‘pixelated’ IMC images, 
we obtain a set of image patches {I(i)} by first dividing each image into 
local patches of tissue and then downsample each patch using a 
max-pooling operation (3 × 3 kernel, stride = 3, no padding) to reduce 
the dimensionality of the input with minor information loss (Supple-
mentary Table 2). Thus, I(i) ∈ ℝ

l×w×c  is an array with l and w denoting 
the pixel length and width of the image and c denoting the number of 
molecular channels in the images (Fig. 1b). Each image patch shows the 
level of c proteins across all cells within a small region of tissue. We set 
l = w = 16, corresponding to a 48 μm × 48 μm region (previously each 
pixel = 1 μm, now each pixel = 3 μm owing to downsampling). We 
applied spectral analysis to study the effect of using different patch 
sizes to predict T-cell infiltration and found that our selected patch 
size remains highly informative of T-cell presence (Extended Data Fig. 1 
and Supplementary Note 2).

From a patch I(i), we can obtain a binary label s(i) indicating the 
presence and absence of CD8+ T cells in the patch and a masked copy 
x(i) with all signals originating from CD8+ T cells removed (set to zero). 
The task for the model f is to classify whether T cells are present (s(i) = 1) 
or absent (s(i) = 0) in image I(i) using only its masked copy x(i). Specifically, 
f(x(i)) ∈ [0, 1] is the predicted probability of T cells, and then we apply a 
classification threshold p to convert this probability to a predicted 
label ̂

s

(i)

∈ {0, 1}. Since we obtain the image label s(i) from the image I(i) 
itself by unsupervised clustering of individual cell expression vectors, 
our overall task is inherently self-supervised.

Classifier training objective. Given a set of masked image patches 
{x(i)} with corresponding CD8+ T-cell label {s(i)}, we train a model f to 
minimize the following T-cell prediction loss, also known as the binary 
cross entropy loss:

L = −

1

N

N

∑

i=1

[s

(i)

log (

̂

s

(i)

) + (1 − s

(i)

) log (1 −

̂

s

(i)

)] , (1)

where

̂

s

(i)

= {

1 if f(x

(i)

) ≥ p

0 if f(x

(i)

) < p

(2)

and p is the classification threshold. We select p by minimizing the 
following RMSE on a separate set of tissue sections Ω:
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The RMSE is a measure of the differences between the observed 
and predicted proportions of T-cell patches in a tissue section averaged 
across a set of tissues Ω, which we take to be the validation set.

U-Net architecture. To obtain a model that can accurately predict 
T-cell localization from environmental cues, we trained a fully convo-
lutional neural network with the U-Net architecture to minimize (equa-
tion (1)). The U-Net architecture consists of a contracting path and an 
expansive path, which gives it a U-shaped structure53. The contracting 
path consists of four repeated blocks, each containing a convolutional 
layer followed by a rectified linear unit (ReLU) activation and a max 
pooling layer. The expansive path mirrors the contracting path, where 
each block contains a transposed convolutional layer. Skip connec-
tions concatenates the upsampled features with the corresponding 
feature maps from the contracting path to include local information. 
The output of the expansive path is then fed to a fully connected layer 
with softmax activation to produce a predicted probability.

U-Net training. We train our U-Net classifiers on patches obtained from 
patients from the training cohort, using stochastic gradient descent 
with momentum and a learning rate of 10−2 on mini-batches of size 
128. Image augmentation was used to prevent overfitting, including 
random horizontal/vertical flips and rotations, in addition to stand-
ard channel-wise normalization. All models presented in this paper 
were trained with early stopping based on the validation Matthews 
correlation coefficient, computed using patches from the validation 
cohort, for a max of 30 epochs. All model performances are reported 
on patches from the test cohort. All models were trained on an NVIDIA 
GeForce RTX 3090 Ti GPU using PyTorch v2.0.0 (ref. 54) and PyTorch 
Lightning v2.2.2 (ref. 55). Implementation code can be found in our 
GitHub repository along with a tutorial Jupyter notebook illustrating 
the entire workflow using an example dataset.

We evaluated the performance of various classifiers, including 
both traditional convolutional neural networks and vision transform-
ers. In all cases, we observed similar performance (Supplementary 
Table 5). We settled on a U-Net architecture because of ease of extension 
of the model to multichannel datasets.

Generating counterfactuals using the T-cell prediction model
Our trained model allows us to formulate counterfactual optimization 
as a constrained optimization problem to generate tumour perturba-
tions predicted to enhance CD8+ T-cell infiltration (Fig. 1c).

Mathematical formulation of optimization problem. Given an image 
patch x(i)

0

 that does not contain CD8+ T cells, our optimization algorithm 
searches for a perturbation δ(i) such that our classifier f predicts the 
perturbed patch x(i)

p

= x

(i)

0

+ δ

(i) as having T cells; hence, x(i)
p

 is referred 
to as a counterfactual instance. Ideally, we want each perturbation to 
involve perturbing as few molecules as possible and realistic in that 
the counterfactual instance is not far from image patches in our training 
data so we can be more confident of the model’s prediction. We can 
obtain a perturbation δ(i) with these desired properties by solving the 
following optimization problem adopted from ref. 56:

δ
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= min

δ
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(5)

where δ(i) is a three-dimensional tensor that describes perturbation 
made to each pixel of the patch.

The three loss terms in equation (4) each correspond to a desirable 
property of the perturbation that we aim to discover. The term Lpred 
encourages validity, in that the perturbation increases the classifier’s 
predicted probability of T cells, so the network is more likely to predict 
the perturbed tissue patch as having T cells when it previously did not 
contain T cells. Next, the term Ldist encourages sparsity using elastic 
net regularization, favouring perturbations that do not require making 
many changes to the TME. Lastly, the term proto(i) in the expression for 
Lproto refers to the nearest neighbour of x(i)

0

 among all patches in the 
training set that are classified as having T cells. Thus, the term Lproto 
explicitly guides the perturbed image x(i)

p

 to lie close to the data mani-
fold defined by our training set, making perturbed patches appear 
similar to what has been observed in TMEs infiltrated by T cells.

Since drug treatments cannot act at the spatial resolution of indi-
vidual micrometre-scale pixels, we constrain our search space to only 
perturbations that affect all cells in the image uniformly. Specifically, 
we only search for perturbations that change the level of any molecule 
by the same relative amount across all cells in an image. We incorporate 
this constraint by defining δ(i) in the following way:

δ

(i)

= γ

(i)

⊙

3

x

(i)

0

, (6)

where γ(i) ∈ ℝ

c defines a single factor for each channel in the image and 
the circled dot operator represents channel-wise multiplication, so that 
within each channel, the scaling factor is constant across the spatial dimen-
sions of the image. In practice, we directly optimize for γ(i), where γ(i)

j

 can 
be interpreted as the relative change to the mean intensity of the jth chan-
nel. However, given that our classifier does have fine spatial resolution, 
we can search for targeted therapies such as perturbing only a specific cell 
type or restricting the perturbation to specific tissue locations by changing 
equation (6) to match these different types of perturbation.

Taken together, the optimization procedure produces an altered 
image predicted to contain T cells from an original image that lacks 
T cells, by minimally perturbing the original image in the direction of 
the nearest training patch containing T cells until the classifier predicts 
the perturbed image to contain T cells (Fig. 1c).

Implementation of optimization procedure. We solve for the optimal 
perturbation δ(i) for each individual patch I(i) from the training cohort 
that (1) contains tumour cells and (2) does not contain CD8+ T cells 
(Fig. 1c). Since our strategy may find different perturbations for differ-
ent tumour patches, we reduce the set of patch-wise perturbations 
{δ

(i)

}

i

 to a whole-tumour perturbation by first taking the median across 
all patches for each patient and then across all patients. We evaluate 
the performance of a whole-tumour perturbation by applying the 
perturbation computationally to patches from the test cohort, before 
passing the perturbed patches through our trained classifier.

During optimization, the weight c of the loss term Lpred is updated 
for n iterations, starting at cinit. If we identify a valid counterfactual 
(predicted to contain T cells) for the present value of c, we will then 
decrease c in the subsequent optimization cycle to increase the 
weight of the additional loss terms to help regularize our solution. 
If, however, we do not identify a counterfactual, c is increased to put 
more emphasis on increasing the predicted probability of the coun-
terfactual. The parameter s

max

 sets the maximum number of optimi-
zation steps for each value of c. The parameter linit sets the initial step 
size for each optimization step. Our optimization code was imple-
mented in Python and was adapted from the Python library Alibi57, 
with substantial modifications including PyTorch compatibility and 
improved speed.

For the purpose of speed, Lproto is defined by first building a k-d 
tree of training instances classified as having T cells and setting the 
k-nearest item in the tree (in terms of Euclidean distance to x(i)

0

) as proto. 
We use k = 1 for all counterfactual optimization. For all other parame-
ters, we list their values in Supplementary Table 11.
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Non-spatial models
In addition to the U-Net model, we also trained a single-layer neural 
network on the average intensity values from each molecular channel 
to obtain a logistic regression classifier, predicting the probability 
of CD8+ T-cell presence in the image patch. This model represents a 
linear model where only the average intensity of each molecule is used 
for prediction instead of their spatial distribution within a patch. Fur-
thermore, we trained an MLP that also uses averaged intensity as input 
features for prediction but is capable of learning nonlinear interactions 
between features. The MLP model consists of two hidden layers (30 and 
10 nodes) with ReLU activation.

Primary cell isolation and cell culture
Cryopreserved human PBMCs (Charles River Laboratories or STEM-
CELL Technologies 70025.1) were thawed in RPMI media supplemented 
with 100 U ml−1 penicillin and 100 U ml−1 streptomycin (Thermo) and 
10% fetal bovine serum (FBS; Thermo). The human melanoma cell 
line A375 (American Type Culture Collection, CRL-1619) was cultured 
in DMEM media supplemented with 100 U ml−1 penicillin, 100 U ml−1 
streptomycin, 1 mM HEPES, sodium and 10% FBS. The human colon 
cancer cell line HCT116 (American Type Culture Collection; kindly 
provided by the Ekihiro Seki lab in Cedars-Sinai Medical Center) was 
cultured in DMEM media (10569010; Thermo) supplemented with 
100 U ml−1 penicillin and 100 U ml−1 streptomycin and 10% FBS in an 
incubator at 37 °C with 5% CO2.

T-cell migration assay
We used a transwell assay to examine the impact of predicted per-
turbations on CD8+ T-cell migration. Before the start of the experi-
ment, PBMCs were thawed and rested for 12 h, after which they were 
pre-treated with combinations of chemokines and antibodies for 
an additional 12 h or maintained in RPMI. Tumour cells (either A375 
or HCT116 cells) were thawed and grown to 80–90% confluence in 
the bottom chamber of 96-well plates. Cancer cells (and PBMCs 
for CRC) were incubated overnight in a 37 °C incubator, with sup-
plementation of signalling proteins and antibodies, according to  
Morpheus’ predictions. A full list of signalling proteins and antibod-
ies used to implement perturbations is in Supplementary Table 12. 
After incubation, PBMCs were seeded into an HTS 96-well perme-
able support (CLS3387, Corning), which were then placed inside  
96-well plates containing cancer cells. Cells were allowed to migrate 
for 4 h according to published transwell migration protocols  
for T cells38.

Flow cytometric counting of CD8+ T cells
To count CD8+ T cells, supernatants from the bottom well of the tran-
swell assay were collected and centrifuged at 500 × g for 5 min. The 
supernatant was discarded and the cell pellet was used for subsequent 
staining for CD8+ T cells using a mouse anti-human CD8 monoclonal 
antibody (CD8 monoclonal antibody 3B5) labelled with either Qdot 
800 or fluorescein isothiocyanate (FITC). PBMCs were resuspended in 
HBSS buffer with 10 mM HEPES and 0.5% BSA. Unstained PBMCs were 
used as a control to determine gating strategy (Supplementary Fig. 4). 
Staining was performed according to the manufacturer’s instruc-
tions. Flow cytometry was performed using either an MACSQuant 
Analyzer 10/VYB (Miltenyi Biotec) or a Cytoflex S flow cytometer 
(Beckman Coulter).

Statistical analysis
We assessed the likelihood of observing a specific number of patients 
with a particular phenotype in a given cluster (Figs. 3b and 4c) using 
the hypergeometric test. This statistical test calculates the probabil-
ity of k successes in n draws from a population of size N containing m 
successes, where draws are made without replacement. The formula 
used is

P(X = k) =

(

m

k

) (

N −m

n − k

)

(

N

n

)

.

For the melanoma dataset, this test was applied to determine the 
probability of observing the distribution of patients with stage III and 
stage IV melanoma among the two clusters. For the CRC dataset, this 
test was applied to determine the probability of observing the distribu-
tion of patients with non-alcoholic fatty liver disease (NAFLD) among 
the two clusters.

We used the Wilcoxon rank-sum test to compare molecule levels 
and cell-type abundance between two patient clusters using tumour 
tissue samples (Figs. 3c and 4d). This non-parametric test evaluates 
whether there is a significant difference in the distributions of two inde-
pendent samples. The Wilcoxon rank-sum test statistic W is calculated as

W =

n

1

∑

i=1

R(X

i

),

where R(Xi) is the rank of the ith observation from the first sample in the 
combined sample of size n1 + n2. To account for multiple comparisons, 
P values obtained from the Wilcoxon rank-sum test were adjusted using 
the Šidák correction. The Šidák-adjusted P value Padj is given by

P

adj

= 1 − (1 − P)

m

,

where P is the original P value and m is the number of tests performed. 
This method adjusts the P values by calculating the cumulative prob-
ability of avoiding type I errors across all tests, providing a rigorous 
control of the family-wise error rate.

We used Welch’s t-test to assess whether there is a statistically 
significant difference in T-cell infiltration between responder and 
non-responders (Supplementary Fig. 3). Welch’s t-test is used to com-
pare the means of two independent samples without assuming equal 
variance. The t statistic is defined as follows:

t =

̄

X

1

−

̄

X

2

√

s

2

1

n

1

+

s

2

2
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2

,

where ̄

X

1

 and ̄

X

2

 are the sample means, s2
1

 and s2
2

 are the sample vari-
ances, and n1 and n2 are the sample sizes.

We used paired t-tests to assess the significance of the perturba-
tion effect across multiple replicates in our transwell assay. The paired 
t-test is used to compare the means of two related samples, typically 
before and after a treatment or intervention. The t statistic for paired 
samples is defined as follows:

t =

̄

d

s

d

/

√

n

,

where ̄

d  is the mean difference between paired observations, sd is the 
standard deviation of the differences and n is the number of pairs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are published and publicly available. 
The melanoma (https://doi.org/10.5281/zenodo.5994135) and breast 
tumour (https://doi.org/10.5281/zenodo.5850951) datasets are both 
available from the Zenodo data repository. The CRC liver metastases 
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dataset is available from the corresponding authors on request. All 
preprocessed data and model outputs are available via the identi-
fier https://doi.org/10.22002/pr14s-wgk05. A Jupyter notebook for 
reproducing the primary analysis and main figures using the depos-
ited data is available via GitHub at https://github.com/cellethology/
morpheus-spatial.

Code availability
Morpheus is available as an open-source Python package at https://
pypi.org/project/morpheus-spatial/. Code for model training, pertur-
bation optimization and analysis are available at https://github.com/
neonine2/morpheus-spatial, which also includes a tutorial Jupyter 
notebook for using Morpheus. Our optimization code was imple-
mented in Python and was adapted from the open-source Python 
library Alibi57, with substantial modifications.
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Extended Data Fig. 1 | Correlation between each frequency band of each protein channel and T-cell infiltration level (proportion of CD8+ T-cell patches) across all 

IMC images for the breast cancer data set. Red dotted line indicates the patch size of 48 µm used in this work.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 2 | Perturbation strategies generated by Morpheus for pseudobulk protein measurements in tumor. A) perturbation strategy aggregated 

to the patient level, with color indicating the percent change in level of a protein relative to the original level in a given patient. B) median perturbation strategy 

aggregated across all patients.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Flow cytometry was performed using either MACSQuant Analyzer 10/VYB (Miltenyi Biotec) or Cytoflex S Flow Cytometer (Beckman Coulter).

Data analysis Flow-cytometry data were analysed by FlowJo software v10 and plotted using Python Matplotlib v3.9. 

Morpheus is available as an open-source python package at https://pypi.org/project/morpheus-spatial. 

Code for model training, perturbation optimization and analysis is publicly available at https://github.com/neonine2/morpheus-spatial, which 

also includes a tutorial Jupyter notebook for using Morpheus. We implemented both model training and counterfactual optimization using 

PyTorch v2.0. Our optimization code was built on the open source Python library Alibi v0.9.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All datasets used in this study are published and publicly available. The melanoma (10.5281/zenodo.5994135) and breast tumor (10.5281/zenodo.5850951) 

datasets are both available from the Zenodo data repository. The CRC liver metastases dataset is available from the corresponding authors on request. All 

preprocessed data and model outputs are available at https://doi.org/10.22002/pr14s-wgk05. A Jupyter notebook for reproducing the primary analysis and main 

figures using the deposited data is is available from Github at https://github.com/neonine2/morpheus-spatial.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The study did not involve human research participants.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

–

Population characteristics –

Recruitment –

Ethics oversight –

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were determined on the basis of variability in cell counts and the availability of reagents/cells.

Data exclusions No data were excluded.

Replication The experiments used 8–12 replicates.

Randomization Cells from the same cell line used were grown under identical conditions; no randomization was used.

Blinding Cells from the same cell line used were grown under identical conditions; blinding was not used.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Human PD-1 Antibody (MAB10861, R&D Systems), CYR61 Polyclonal Antibody (PA1-16579, Thermo), PD-L1 Monoclonal Antibody 

(MIH1, Thermo), CXCR4 Antibody (MAB170, R&D Systems), Human anti-CCL18 antibody (AB9849, Abcam), Human anti-CCL22 

antibody (MAB336, R&D Systems).

Validation Antibody validation is indicated on the manufacture's website (cell images) and/or provided by data included in the paper.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Human HCT116 colorectal carcinoma cells (kindly provided by Ekihiro Seki lab in Cedars-Sinai Medical Center via ATCC), 

human peripheral blood mononuclear cells  (PBMCs; Charles River Laboratories or STEMCELL Technologies), human 

melanoma cell line A375 (ATCC).

Authentication The cell lines were authenticated by the vendors (ATCC) or providers.

Mycoplasma contamination All the cell lines had standard growth rate and had no suspected mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation  T cells within PBMCs were washed with Flow Cytometry Buffer [HBSS, no calcium and magnesium, with 10 mM HEPES and 

0.5% BSA], and stained with the human CD8 monoclonal antibody before proceeding to flow-cytometry analysis.

MACSQuant Analyzer 10/VYB (Miltenyi Biotec) and Cytoflex S Flow Cytometer (Beckman Coulter).

FlowJo software v10.

The abundance of the relative cell populations was determined by flow cytometry.

Instrument

Software

Cell population abundance

Gating strategy Cells were firstly gated based on forward (FSC-A) and side scattering (SSC-A) to remove dead cells and other debris. Doublets 

were then gated out by FSC-A/FSC-H. Positive populations were defined using unstained cells as control.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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