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Abstract

Cellular interactions form the fundamental/core circuits that drive development, physiology, and disease
within tissues. Advances in spatial genomics (SG) and artificial intelligence (AI) offer unprecedented
opportunities to computationally analyze and predict the behavior of cell intricate networks, and to iden-
tify interactions that drive disease states. However, challenges arise in both methodology and scalability:
(i) how to computationally characterize complicated cellular interactions of multi-scale nature where
chemical genes/circuits in individual cells process information and drive interactions among large num-
bers of diverse cell types, and (ii) how to scale up the pipeline to accommodate the increasing volumes
of SG data that map transcriptome-scale gene expression and spatial proximity across millions of cells.
In this paper, we introduce the Cellular Interaction Foundation Model (CI-FM), an Al founda-
tion model functioning to analyze and simulate cellular interactions within living tissues. In the CI-FM
pipeline, we explicitly capture and embed cellular interactions within microenvironments by leveraging
the powerful and scalable geometric graph neural network model, and optimize the characterization of
cellular interactions with a novel self-supervised learning objective — we train it to infer gene expressions
of cells based upon their interacting microenvironment. As a result, we construct CI-FM with 100 mil-
lion parameters by consuming SG data of 23 million cells. Our benchmarking experiments show CI-FM
effectively infers gene expressions conditional on the microenvironmental contexts: we achieve a high
correlation and a low mismatch error (MSE of 1.1% relative to the square median expression), with
79.4% of cells on average being annotated as the similar cell type based on their predicted and actual
expressions. We demonstrate the downstream utility of CI-FM by: (i) applying CI-FM to embed tumor
samples to capture cellular interactions within tumor microenvironments (ROC-AUC score of 0.76 on
classifying sample conditions via linear probing on embeddings), and identifying shared signatures across
samples; and (ii) using CI-FM to simulate changes in microenvironmental composition in response to
T cell infiltration, which highlights how CI-FM can be leveraged to model cellular responses to tissue
perturbations — an essential step toward constructing “Al virtual tissues”. Our model is open source and
publicly accessible at https://huggingface.co/ynyou/CIFM.

Introduction

The cell is the fundamental unit of life, and the cellular communication/interaction establishes the cell-
level circuits of living functions — it is indisputably critical for all diseases, from cancer [1] and autoimmune
diseases [2] to aging [3] and normal physiology [4]. The scaling of spatial genomics (SG) data [5] and
advancements in artificial intelligence (AI) techniques [6] offer unprecedented opportunities to construct
computational models to characterize cellular interactions, while current developments do not fully unleash
the potential of Al and big SG data: (i) the ineffectiveness of the simplistic model architecture at model-
ing intricate cellular interaction circuits (e.g. naive averaging via convolution to represent interactions [7])
which are of multi-scale nature and inherent complexity: in the real-world systems, each cell acts as a node
that processes information and changes state, interacting with other nodes through chemical communica-
tion, leading to intricate cell interaction networks, where cellular nodes communicate to compute, process
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information, make decisions, and execute state transitions; and (ii) the challenge in scaling up to accommo-
date the increasing volumes of SG data that map transcriptome-scale gene expression and spatial proximity
across millions of cells, spanning large sections of tissue, organ systems, and disease states [8]. We defer the
discussion of more related works to Appdx. A.

In this paper, we aim to build a larger-scale model capable of characterizing cellular interactions to con-
sume massive SG data from varied platforms/sources, in order to function to not only analyze but more
importantly, computationally simulate these interactions — an initiative toward constructing “Al virtual
tissues”. To this end, we leverage the advanced AI model of geometric graph neural networks (GeoGNNs)
[9, 10] — the powerful and scalable model able to explicitly capture and embed interactions within cellular
microenvironments (CMEs) via geometric message passing. To optimize the characterization of cell inter-
actions, we develop and implement a novel self-supervised learning pipeline to train GeoGNNs on the vast
SG data — around 100 SG samples with 23 million cells and 32 thousand measured genes of four platforms
of Visium and Xenium. We refer our model as the cellular interaction foundation model (CI-FM).

Our self-supervised learning pipeline is designed in a masking-reconstruction manner on the SG data
of geometric structures. Intuitively, our model is optimized to reconstruct the masked gene expressions of
cells based on their microenvironmental contexts. Such a self-supervised learning task is highly intriguing
in living systems for the reasons: (i) it requires the model to capture the important cellular interactions
within CMEs to deliver the best inference for masked cells, and (ii) the task itself holds significant value
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Fig. 1 Overview of the CI-FM pipeline. (A) SG data with around 23 million cells of four platforms are curated from the 10x
Genomics database. (B) A CME is featurized as a geometric graph with node features of gene expressions and cell locations,
and edge features of spatial proximity. (C) CI-FM is trained to reconstruct the gene expressions of masked cells based on their
microenvironmental contexts. (D) The utility of CI-FM is demonstrated in the examples of microenvirionment analysis and
microenvironmental perturbation perturbation simulation.
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in computational simulations of the systems in numerous applications, for instance, it can simulate or
“hallucinate” cell state variations in response to tissue-level perturbations in their CMEs.

We benchmark CI-FM and demonstrate that it effectively infers CME context-dependent gene expres-
sions, achieving high correlations and low mismatch errors across varied samples, platforms, and scenarios,
including in-sample, cross-sample, and even cross-platform evaluation (e.g., training on Visium and zero-
shot evaluation on Xenium). For instance, in the Visium-HD dataset, 79.4% of cells on average are annotated
with the top-5 cell typing profile containing shared cell types based on their predicted and actual expres-
sions. Furthermore, we illustrate the downstream utility of CI-FM with two examples. In the first scenario,
we use CI-FM embeddings to analyze the CME configurations of different samples. The embeddings well-
capture distinguished cellular interactions in healthy and tumor samples, achieving an ROC-AUC score of
0.76 when classifying sample conditions via linear probing. Furthermore, we find that CMEs with highly
similar CI-FM embeddings — indicative of shared microenvironmental features across tumor samples — are
consistently enriched luminal epithelial cells, suggesting that luminal epithelial cells are core cell types in
different tumor types, orchestrating cell-cell communication and maintaining tumor structure. In the second
scenario, we apply CI-FM to autoregressively infer CME changes during immune cell infiltration. After the
virtual injection of T cells in the breast tumor sample, we observe variations in the populations of different
cell types, including epithelial, fibroblast, and endothelial cells.

CI-FM is trained to reconstruct the gene expressions of masked
cells based on their microenvironmental contexts

We hypothesize that the interactions across cells result in the shared information reflected in their gene
expressions. Thus, we are intrigued to ask the following question: to what extent can we infer the gene
expression of a cell from scratch given the context of its neighbor interacting cells (that constitute CMEs)?
To delve into this question, we train a large-scale GeoGNN-based foundation model [9, 10] on massive SG
data [5, 11] by optimizing a carefully designed self-supervised learning objective [12, 13]. We refer our model
as the cellular interaction foundation model (CI-FM).

The CI-FM workflow consists of three parts: (i) geometric graph featurization of CMEs (Fig. 1B), (ii)
masking and encoding/embedding of geometric graphs (Fig. 1C Top), and (iii) padding and decoding/re-
construction of geometric graph features (Fig. 1C Bot). In the foremost step (i), we featurize CMEs in
order to feed them into neural networks (Fig. 1B, Appdx. B.1). Considering the ith CME (out of K, i.e.
i €{1,..., K}) containing N; cells with M; measured genes, the featurized geometric graph is denoted as:
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where X; € RQ’@X Mi is the node feature matrix of gene expressions, C; €
and A(C;) € {0,1}"Vi*Ni is the adjacency matrix constructed based on the spatial proximity of the coor-
dinates. To collect adequate CMEs for model training, we curate data from the 10x Genomics database
[14, 11] (Fig. 1A, Appdx. B.1), a publicly available and extensive resource of spatial genomics data from
four different platforms (Visium-Spatial/HD, Xenium-V1/Prime), containing approximately 100 slides of
healthy /tumor samples of varied organs, with around 23 million cells and 32 thousand measured genes.

With the featurized geometric graphs, we train CI-FM in a self-supervised manner via masking-
reconstruction. In the step (ii), we randomly and uniformly remove nodes within the geometric graph and
then use a GeoGNN encoder fenc;o(-) to embed the remaining structure into the latent space (Fig. 1C Top,
Appdx. B.2). In the step (iii), we pad the removed nodes with the learnable padding embeddings e, return
them to the geometric graph at their original locations, and then use a GeoGNN decoder fqec:o(+) to recon-
struct their masked gene expressions (Fig. 1C Bot, Appdx. B.2). We optimize the GeoGNN encoder/decoder
by minimizing the mismatch between the masked and reconstructed gene expressions, formulated as:
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where umn is short for unmasked, @,y is the concatenation alone the 2nd dimension (feature dimension),
Rmv(-),Pad(-) are the removal and padding functions on geometric graphs, respectively, I; is the set of
masking indices of the ith CME, X[I] denotes matrix indexing, and Loss(-) is the loss function.

We illustrate the utility of CI-FM through two examples, and its capabilities extend beyond then. In
the first scenario, we use the embeddings of CI-FM to analyze the CME configurations of tumor samples
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Fig. 2 Benchmarking of the CI-FM performance. (A) Dataset split for in-sample evaluation. Cross-sample evaluation and
cross-platform evaluation are also conducted. (B) In-sample evaluation on the Visium-Spatial dataset. (C) In-sample evaluation
on the Visium-HD dataset. (D) Evaluation on top-k cell typing accuracy of CI-FM on the Visium-HD dataset. (E) Cross-
platform evaluation on the Xenium-Prime dataset.
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(Fig. 1D Top, Appdx. B.3). In the second scenario, we apply CI-FM to autoregressively infer changes in
the cell states of CMEs after virtually injecting immune cells (Fig. 1D Bot, Appdx. B.3).

CI-FM effectively infers context-dependent gene expressions across
varied spatial genomics samples and platforms

We assess CI-FM by evaluating its precision in inferring the gene expressions of cells, based on the context
of their neighboring cells. For benchmarking, we split each slide of SG samples into training, validation,
and test regions for model training, hyperparameter tuning, and evaluation, respectively (Fig. 2A). We
refer the evaluation with the regional split as in-sample evaluation. We also evaluate using the sample split
beyond the regional split, where samples are randomly held out for evaluation (Appdx. C.2), referred as
cross-sample evaluation. We compared CI-FM against baselines that include random expressions following
parameterized uniform and Bernoulli distributions (with parameters learned from the data), as well as a
naive neighborhood average approach that computes the mean expressions of the neighboring cells.

We first evaluate CI-FM on the relatively small-scale Visium-Spatial dataset, which has a lower resolution
of spots (Fig. 2B, Appdx. C.1). The evaluation is performed using metrics of correlation and mismatch error:
correlation assesses whether the model ranks gene expression correctly, while mismatch error measures how
accurately it infers the actual values of gene expression. We observe that CI-FM consistently achieves the
best performance across 44 slides in both metrics. We obtain similar observation when evaluating on their
1,000 most differentially expressed genes (Appdx. C.1).

We next evaluate CI-FM on the Visium-HD dataset, which is 50 times larger and offers single-cell
resolution (Fig. 2C, Appdx. C.1). In addition to metrics of correlation and mismatch error, we utilize the
neural-network based cell typing tool scTab [15] to determine whether reconstructed gene expression is
mapped to the same cell type as mapped with the masked gene expression, a measure we term cell typing
accuracy. This metric evaluates whether CI-FM infers expressions of the most important genes that is critical
in determining cell types. We observe that CI-FM consistently achieves the best performance across 10
slides in all three metrics. We obtain similar observation when evaluating on their 1,000 most differentially
expressed genes per sample (Appdx. C.1). Since the cell typing accuracy may be affected by the precision
of the cell typing tool itself, we relax the stringency of the cell typing evaluation by considering whether the
predicted top-k cell types overlap between predictions based on masked and reconstructed gene expressions
(Fig. 2D, Appdx. C.1). We observe CI-FM is able to achieve around 80% of accuracy on average when
k =5, and nearly 100% accuracy when k = 10 (across a total of around 200 cell type labels).

We last assess the transferability of CI-FM by evaluating it on the Xenium-V1 and Xenium-Prime
datasets while training on Visium-HD (Fig. 2E), referred as cross-platform evaluation. In spite of the
substantial technical differences between Visium (sequencing-based) and Xenium (imaging-based), CI-FM
demonstrates effective gene expression inference. In the Xenium-Prime samples, it consistently achieves the
highest correlations and lowest mismatch errors, and outperforms in cell typing accuracy for 6 out of 8 slides.
However, it underperforms in the Xenium-V1 samples (Appdx. C.3), possibly due to the huge discrepancies
in the gene measurement scale: around 17K genes on average in Visium-HD, 300 genes in Xenium-V1, and
5K genes in Xenium-Prime (Fig. 1A). This can be remedied with further finetuning: we further finetune
CI-FM on Xenium-V1, which results in the best correlation across all 38 slides (Appdx. C.3).

CI-FM is able to embed CMEs and characterize
microenvironmental patterns across tumor samples

Since the encoding process of CI-FM functions to map the information of CME contexts into latent embed-
dings, we ask the question that how are the CMEs of different samples distributed within such latent space?
We visualize the CME embeddings of Visium and Xenium from CI-FM in a lower-dimensional PCA and
UMAP space (Fig. 3A Right). We observe that in the geometries of these two embedding landscape, there
existing heterogeneity across tumor samples indicating the sample-specific heterogeneity within CMEs; while
there also existing interesting clusters of closely located points indicating shared CMEs across samples.

To quantify how well the microenvironment-level embeddings of CI-FM capture tumor conditions, com-
pared with the cell-level embedding of scVI [16], we perform linear probing to classify tumor and non-tumor
samples (Fig. 3B). Specifically, we train a linear classifier on Visium-HD embeddings of tumor and healthy
samples and test it on Xenium-Prime sample embeddings. We observe that even this simple linear model
achieves decent classification performance in distinguishing tumor from non-tumor samples (ROC-AUC
score of 0.76), despite being evaluated on cross-platform data.

To quantify the similarity of CME profiles across samples, we performed a KNN analysis on the CME
embeddings, where we ask the question that within the k£ nearest neighbors of each CME embedding, what
fraction of these neighbors comes from different samples? As a result, each cell is assigned a KNN fraction
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vector, where the vector’s length equals the number of samples, its values range from 0 to 100, and its
entries sum to 100. We average all the KNN fraction vectors and visualize the sample-level profile (Fig.
3C). Notably, the diagonal blocks capture the shared CMEs within the same tumor types across different
samples, and more interestingly the off-diagonal entries capture shared CMEs across different tumor types.
We perform the same analysis on the Visium-Spatial dataset and obtain similar observations (Appdx. C.4).

Building upon the above observation, we further investigate a more specific question that what is the
cell type composition of these shared CMEs across tumor samples? To answer this question, we retrieve
the CME-level KNN profiles (without averaging on samples) and perform clustering (Fig. 3D Left), and
then we annotate the cell type composition within each cluster using scTab [15] (Fig. 3D Right). When we
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and Xenium-Prime datasets. (B) Linear probing on CI-FM and scVI embeddings to classify tumor vs non-tumor samples. (C)
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cluster the KNN profile of CMEs from a breast tumor sample, we observe that while a large proportion of
the CMEs are unique to this particular sample (in gray), there exist a set of CMEs that are appear to be
shared across other tumor samples (shown in other colors), including tonsil and colorectal cancer samples.
Furthermore, these shared CMEs across tumor samples are enriched with luminal epithelial cells, with their
spatial visualization provided (Fig. 3E). We also perform the same analysis and visualization on the other
nine samples in the Visium-HD dataset (Appdx. C.4).
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Fig. 4 CME response simulation to perturbation with CI-FM. (A) Three examples of the perturbation response simulation
in the breast tumor sample. column 1: querying CMEs from samples; column 2: virtually injecting T cells at random locations
within CMEs; column 3: masking and predicting gene expressions autoregressively for all cells in the CMEs. (B) Summary of
the cell state change in response to the injection of T cells.
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CI-FM is able to simulate CME changes in response to
microenvironmental perturbations autoregressively

Since the decoding process of CI-FM maps CME latent embeddings to the potential gene expression profiles
associated with CMEs, we ask the question whether we can simulate the evolution of CMEs by iteratively
updating their cells? We initialize this process by first virtually injecting cells of interest into CMEs as
microenvironmental perturbations, and collect the model outputs that represent the simulated cellular
responses to these perturbations. We inject a fixed number of T cells at random locations as perturbations.

We visualize the simulation on a breast tumor sample (Fig. 4A). It is important to note that this
simulation pipeline is highly general and not limited to specific samples or perturbations. We observe a
increase in various types of immune cells across the three examples, such as memory B cells. By summarizing
changes in cell type composition across a large number CMEs, we observe that CI-FM simulates variations
(both increases and decreases) in the populations, in addition to immune cells, of various other cell types
including epithelial, fibroblast, and endothelial cells (Fig. 4B). We also simulate and summarize changes in
cell type composition across on other nine samples in the Visium-HD dataset (Appdx. C.5).

Discussion

With the emerging interest in demystifying cellular interactions related to various phenotypes, ranging
from aging to cancer, there is a growing demand for computational models designed for this purpose.
Advances in artificial intelligence (AI), a powerful data-driven approach, alongside the increasing quality
and quantity of single-cell genomic (SG) data, present an exciting opportunity to develop such models.
We develop CI-FM here to fully unleash the potential of both modeling and data. Our large-scale model
captures interactions across cells and is trained on massive SG datasets. The training process is carefully
designed and novel, leveraging cellular interactions to infer missing gene expressions — a feature that enables
in silico simulation of living systems. We believe CI-FM represents an important step toward constructing
the ultimate biological digital twin, or what could be termed “Al virtual tissue” in the future.
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Appendix A Related Works

Spatial genomics. Spatial genomics is a rapidly evolving biotechnology that bridges the gap between
molecular profiling and spatial context, enabling the study of gene expression within the native tissue
architecture. Unlike traditional transcriptomic techniques that analyze dissociated cells and lose spatial
information, spatial genomics preserves the spatial relationships between cells, offering unprecedented
insights into cellular function, tissue organization, and microenvironmental interactions. Recent techno-
logical advances have significantly enhanced our ability to generate multiplexed tissue imaging data that
captures cellular neighborhoods within intact tissues. A wide range of platforms, including sequencing-
based methods (e.g., Visium [14], Stereo-seq [17]) and imaging-based approaches (e.g., Xenium, seqFISH [5],
MERFISH [18]), now allow for the simultaneous measurement of thousands of genes with high spatial pre-
cision. Moreover, the rapid development of new platforms and methods continues to increase the diversity
and complexity of spatial genomics data, enabling deeper insights into different biological conditions.

AT virtual tissue. Al-powered virtual tissue models, a brand-new concept, represent an exciting inter-
section of artificial intelligence and biological research, enabling the analysis of tissue structure and function
with unprecedented precision [6]. These models leverage advanced machine learning algorithms to analyze
tissue-level data such as spatial genomics, transcriptomics, proteomics, and imaging. Compared to recent
concurrent works with a similar perspective [19, 20] that are based on transformer architectures, our CI-FM
demonstrates superior scalability due to the unique advantages of geometric graph neural networks.

Geometric graph neural networks. Geometric graph neural networks (GeoGNNs) are an extension
of traditional graph neural networks (GNNs) [21, 22], designed to process data that resides on geometric
structures like manifolds, point clouds, or other spatially embedded graphs, enabling superior performance
in various domains such as computational biology, physics simulations, robotics, and computer vision [23, 9].
Compared to GNNs, GeoGNNs have the advantage of better expressiveness. They leverage the geometric
and topological properties of data [10]. Compared to transformers [24, 25], GeoGNNs are more scalable, as
they employ local message passing rather than global (fully connected) mechanisms.

(Geometric) graph self-supervised learning. Self-supervised learning on graphs is shown to learn
more generalizable, transferable and robust graph representations, through exploiting vast unlabelled data
[26, 27]. The main advantage of self-supervised learning is that it does not require any human annotation
which is usually resource-intensive in biology, enabling the utilization of rich data resources to their fullest
potential [13, 12]. Recent efforts have also extended this technique to geometric graphs, demonstrating its
effectiveness in various applications, such as molecular representation learning [28, 29].

Appendix B Extended Methodological Details

B.1 Spatial Genomics Data Preprocessing and Geometric Graph Featurization

We download the raw count SG data of Visium and Xenium from 10x Genomics (https://www.10xgenomics.
com/datasets), using filters “Visium Spatial” and “Xenium In Situ” under Platform, and “Human” under
Species. We read the raw counts with coordinates measured in micrometers, and their metadata into the
AnnData format [30]. We remove mitochondrial genes, void cells (those without detected gene expres-
sion), and retain only cells annotated as “in tissue” based on their histological images, and then normalize
gene counts and conduct loglp-transformation. For Visium-HD data, we select a bin size of 8x8um as
recommended. We eventually obtain 100 slides, with 23,139,655 cells and 32,986 measured genes (Fig. B1A).
For benchmarking our approach, we split each slide into training, validation, and test regions by seg-
menting it. We define the segmentation rule as follows: using a slide-specific threshold along the z- and
Y-axes as Tihres, Yshres, We allocate a cell with coordinates (z, y) to the training data if x < Zypres; to the val-
idation data if > Tipres and ¥ > Yrnres; and to the test data if © > Tinres and y < yinres- LThis unbiased split
allows us to preserve the CMEs of each cell as much as possible. We compute the thresholds as follows: given
the minimum and maximum coordinates of each slide along the z- and y-axes as Tmin, Tmax, Ymin> Ymax, We
calculate Tihres = Tmin + (Tmax — Tmin) X 0.6, and Ythres = Ymin + (Ymax — Ymin) X 0.5. The number of cells
in training, validation, and testing regions follows an approximate 3:1:1 ratio in each slide (Fig. B1B).
With the above preprocessing, we obtain multiple slides of SG data containing information about the
expressions and locations of cells. For the ith slide containing N; cells and M; measured genes, we featurize
it into a geometric graph G; = {X;,C;, A;(C,)}: X; € R%X M the node feature matrix, is derived from
gene expressions; C; € RYi*2 the geometric feature matrix, is derived from spatial locations; and A;(C;) €
{0, 1}VixMi " the adjacency matrix, is constructed from C; to capture spatial proximity information. We
build a radius graph for the adjacency matrix that given the radius threshold riyyes, the adjacency matrix

is computed as: A;(C;)[j, k] = {17 if [|Ci[5]-Cilkll|<Tenres

o, otherwise , with the radius threshold r¢nes set to 20um for
Visium-HD, Xenium-V1 and Xenium-Prime and 150pm for Visium-Spatial of spot resolution.
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Fig. B1 Dataset statistics. (A) Number of cells and measured genes per sample in the Visium and Xenium datasets. (B)

Number of cells in the training, validation and test in the regional split.
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B.2 Geometric Graph Neural Network Encoder and Decoder

GeoGNNSs are capable of processing geometric data while respecting their inherent symmetry of permutation
and spatial transformations [9, 10], which is important for cellular systems as biological functions remain
unaffected by permutations in cell features or by global transformations (of rotation and translation) in
location. Specifically, a GeoGNN f(-) takes a geometric graph as input and outputs a (D + 2)-dimensional
invariant and equivariant embedding for each node (cell) as Ziny @ (2) Zeqv = (X, C, A(C)), where @y is
the concatenation alone the 2nd dimension (feature dimension), Zj,, € RNV*P s the invariant embedding
matrix, and Zeqy € RN *2 the equivariant embedding matrix. It respects the symmetry via strictly satisfying:

Permutation Symmetry: P(Ziny ©(2) Zeqv) = f(PX,PC,PA(C)PT), VP € S,; (B1)

Transformation Symmetry: Zin, ©(2) (Zeqv R +t) = f(X7 CR+t,A(CR+ t)), V(R,t) € SE(2),
(B2)

where S, is the group of permutation of n elements, and SE(2) is the Special Euclidean group in 2D.
We leverage the E(n) equivariant graph neural network (EGNN) [9] as the base GeoGNN encoder and
decoder architecture for its effectiveness and efﬁciency Considering the input and output of the /th EGNN

layer (out of L, I € {1,...,L}) is denoted as Z; 0 D(2) Z(Z) = f(l)( l 1) ,ZU-1 A(C)) where A

inv eqv inv

X, YA =C.Zyw = Z(L) Zeoqy = ZY) the layer-wise message passing of the ith node is formulated as:

eqv inv?’ eqv?
Message: Msg(l) MLP; (Zl(rllvl)[ ] D(2) Zl(rl1V HZegvl) Zélqvl) H) (B3)
1 _
EqvEmb: égv[ ] = glqvl)[ ]+ m Z (Zélqvl) [1] - (l 1)[ 1) % MLP2(M5g( )) (B4)
je{1,..., N},
A(C)[i,5]1=1
¢ 1 l

Je{l,....N},
A(C)]ij]=1

where MLP(:) denotes the multilayer perceptron, Sum(-) represents the summation function, and the
computation can be parallelized across all nodes simultaneously. We rely on the final invariant represen-
tation Zj,, for encoder embeddings and decoder reconstructions, so the final layer I/O is formulated as

Zy) = f0(z0, Z0D, AC)).

One issue with the current GeoGNN architectures is the presence of void node biases, where the addition
of dummy void nodes unnecessarily affects the representations of real nodes. In cellular systems, the addition
of non-realistic void cells (e.g. without any gene being expressed) introduces bias into GeoGNN models,
affecting cell representation in arbitrary directions. Specifically, we aim to further enforce the GeoGNN

model to respect the void symmetry by strictly satisfying:
Void Symmetry:  Ziny ©(2) Zeqr = f(X o1 X,Cau) C, A(C &g, C‘)) [ N, (B6)

where X € RV*M represents the problem-specific void node features, N is the number of void nodes, and
C e RNV*2 denotes the arbitrary locations of the void nodes. We focus on eliminating the bias for void cells,
specifically when X = 0. We achieve this by proposing a modified void-invariant architecture based upon
EGNNs (Egs. (B3) - (B5)), with message-passing formulated as:

Intensity: Int{) = BEMLP, (2}, V[0 T 241,V [5)); (B7)
Message: Msg!) = BEMLP, (2, Vi @) 2.1, 1] & )Hzgiwl)] Z{ (] H xtne));  (B8)
BqvEmb:  ZU)[i] = ZU0V+ Y (2801 - 28.V1) x BEMLP,(Msg]))): (B9)
jE{l,...,N},
A(C)[ij]=1
InvEmb:  Z{) [i] = BEMLP,( Y Msg!'), (B10)
Je{1,...N},
A(O)ij]=1

where BFMLP(-) denotes the bias-free multilayer perceptron containing no bias weights.
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The key components introduced to guarantee void symmetry (Eq. (B6)) are as follows: 1) the introduc-
tion of the intensity term (Eq. (B7)) ensuring that the zero intensity if either the ith or jth node is void,
thereby nullifying the void message; 2) the employment of bias-free multilayer perceptron to preserve the
void message; 3) the utilization of sum pooling (rather than mean pooling) to eliminate the population

bias in representation resulting from void nodes. More importantly, the void-invariant architecture allows
a(zinv@@)zeqv)

X [0X=0
numerous downstream applications requiring gradient information (e.g. counterfactual search [8]).

the computation of derivatives at void features, i.e. exists, which is highly valuable for

B.3 Geometric Self-Supervised Learning

We train the GeoGNN in a self-supervised manner through a masking-reconstruction approach. In the
encoding stage, we randomly remove 5% of the nodes for masking. Specifically, given an input geometric
graph G = {X,C, A(C)}, and denoting the masked and unmasked indices as I and I, respectively, the
ma§king process is performed by removing the nodes as X yum D) Cunm = Rmv(X, C,I) where X ym =
X[I], Cynm = CII]. A GeoGNN encoder fenc:o(-) parametrized with 6 is then applied to embed the geometric
graph as Zene = fenc:0(Xunm, Cunm, A(Cunm)). In the decoding stage, we pad the masked node in the
latent space with a learnable padding embedding e € R”. Specifically, the padding process is performed as
Zpaqa = Pad(Zenc, €,1) where Z,,q[i] = €,Vi € I. A GeoGNN decoder fqec;(-) parametrized with ¢ is then
applied to reconstruct the masked node features as X dec = fdec;¢(Zpad, C, A(C)).

We optimize the model by minimizing the discrepancy between the masked and reconstructed gene
expressions. We optimize on a balanced MSE loss on all the K samples with the optimization formulated as:

K
o1 1 . . 1 . .
pin 72 (g T 2 KU Xaeli g 30 (Xl = Xaw i H)?).
o i=1 gL N S e TN, ge{l Vb © e 1 TN,
Re{L.D},  2h ke{l...Db et Dy
i St k= L

(B11)
where the subscript represents the sample index.

Appendix C Extended Results

C.1 Evaluation on Alternative Metrics

The metrics used for correlation are Spearman correlation and for mismatch error the mean square
error (MSE). We further assess CI-FM on the balanced MSE metric expressed as BMSE =

%(MSE(Labels[Labels > 0], Predictions[Labels > 0]) + MSE(Labels[Labels = 0], Predictions[Labels = 0]))

to mitigate the dominance of non-expressed genes, and on Spearman correlation for non-zero-expressing
genes to evaluate the model’s ranking accuracy for expressed genes. Moreover, we perform the same evalu-
ation process on the 1,000 most differentially expressed genes per sample computed with Scanpy [30]. We
evaluate these metrics on the Visium-Spatial dataset (Fig. C2) and the Visium-HD dataset (Fig. C3).

The cell typing accuracy, computed by mapping reconstructed gene expression to the same cell type as
mapped using masked gene expression, may be affected by the precision of the cell typing tool itself. To
address this, we relax the stringency of the cell typing evaluation by considering whether the predicted top-k
cell types overlap between predictions based on masked and reconstructed gene expressions. We evaluate
this with k set to 1 (original evaluation), 3, 5, and 10. The top-k cell typing accuracy is computed on the
Xenium-V1 and Xenium-Prime datasets (Fig. C4).

C.2 Evaluation with Cross-Sample Split

We perform a cross-sample split by randomly holding out samples for testing and using a regional split of the
remaining data for training and validation. We evaluate CI-FM on the Visium-Spatial dataset, by holding
out 9 of the 44 samples for test and using the same metrics of correlation and mismatch error (Fig. C5).

C.3 Evaluation on Cross-Platform Spatial Genomics Data

We perform a cross-platform evaluation by training CI-FM on the Visium-HD dataset and evaluate on the
Xenium dataset. To ensure that the input gene expression features maintain the same semantics when fed
into the model, we perform channel matching before evaluation: we match gene channels across platforms
if they are measured on both, and zero-initialize them otherwise. In our datasets, nearly all gene channels
are matched between Visium-HD and Xenium, with only a few exceptions. We perform zero-shot evaluation
and finetuning evaluation: in zero-shot evaluation, we directly assess the model trained on Visium-HD after
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Fig. C2 Extended benchmarking results on the Visium-Spatial dataset. (A) Evaluation results on MSE, balanced MSE and

. (B) Evaluation results on the 1,000 most differentially expressed genes.
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C.5 Extended Perturbation Response Simulation Results
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Fig. C5 Cross-sample evaluation on the Visium-Spatial dataset. (A) Evaluation results on Spearman correlation, Spearman

correlation on non-zero-expressing genes MSE and balanced MSE.
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Fig. C6 Cross-platform evaluation on the Xenium-V1 dataset. (A) Training on Visium-HD and zero-shot/finetuning evaluation

on Xenium-V1. (B) Training on Visium-Prime and zero-shot evaluation on Xenium-Prime.
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Fig. C7 Cross-platform evaluation on the Xenium-Prime dataset. (A) Training on Visium-HD and zero-shot/finetuning
evaluation on Xenium-V1. (B) Training on Visium-Prime and zero-shot evaluation on Xenium-Prime.
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A Embedding Analysis on Visinm-HD Datasets 1: CME Clusters, Cell Type Composition, and Spatial View
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Fig. C8 Embedding analysis on other five samples in the Visium-HD dataset. (A) The KNN profile for each CME without

averaging, the hierarchical clustering, the cell type composition of each cluster, and the spatial distribution of each CME
cluster. The legend is shared with Fig. 3 panel (B).
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A Embedding Analysis on Visium-HD Datasets 2: CME Clusters, Cell Type Composition, and Spatial View
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Fig. C9 Embedding analysis on other four samples in the Visium-HD dataset. (A) The KNN profile for each CME without

averaging, the hierarchical clustering, the cell type compositﬁ'(in of each cluster, and the
cluster. The legend is shared with Fig. 3 panel (B).

spatial distribution of each CME


https://doi.org/10.1101/2025.01.25.634867
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.25.634867; this version posted January 27, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A PCA and Umap Visualization of Visium-Spatial Embeddings
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Fig. C10 CME embedding with CI-FM on the Visium-Spatial Dataset. (A) Lower-dimensional visualization in PCA and
UMAP space. (B) The fraction (%) of the 100 nearest neighbors queried with CI-FM embeddings across different samples. The
value is averaged across all CME embeddings of the entire sample. * denotes a value greater than 1.
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'y of Microenvir tal Perturbation Response Simulation on Visium-HD Datasets

Human Lung Cancer, IF Stained (FFPE) | l

Human Breast Cancer (Fresh Frozen)

.:: ‘mﬁu\ AT e T T — | F—— fl‘\“\r | | o
Mlm [T - |

Human Tonsil (Fresh Frozen)

[ B ) iﬂiWr il T i
|

m. \ I
[l Human Lung Cancer 2 (FFPE)
N | : |
- u*ﬂﬂh\ [TV E— i
=
|
— |
- _
F » ,
- - Human Tonsil, IF (Fresh Frozen)
T} " L
L o il L’_"
| ol
R |
- Human Lung Cancer 1 (FFPE)
[ | i; - - Lﬂﬁm i ez wikil
i
s |
. Human Colorectal Cancer (FFPE)
ETS e

Human Breast Cancer (Fixed Frozen)
1

—_—
II |‘\|:‘j“ L1 T
=

Human Lung Cancer (Fixed Frozen) E Human Pancreas (FFPE)
b o

I |

Fig. C11 CME response simulation to perturbation with CI-FM. (B) Summary of the cell state change in response to the
injection of T cells on other nine samples in the Visium-HD dataset.
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